Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_88_5_a3, author = {V. N. Dubinin}, title = {On the {Finite-Increment} {Theorem} for {Complex} {Polynomials}}, journal = {Matemati\v{c}eskie zametki}, pages = {673--682}, publisher = {mathdoc}, volume = {88}, number = {5}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a3/} }
V. N. Dubinin. On the Finite-Increment Theorem for Complex Polynomials. Matematičeskie zametki, Tome 88 (2010) no. 5, pp. 673-682. http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a3/
[1] G. V. Milovanović, D. S. Mitrinović, Th. M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Sci. Publ., Singapore, 1994 | MR | Zbl
[2] P. Borwein, T. Erdélyi, Polynomials and Polynomial Inequalities, Grad. Texts in Math., 161, Springer-Verlag, New York, NY, 1995 | MR | Zbl
[3] Q. I. Rahman, G. Schmeisser, Analytic Theory of Polynomials, London Math. Soc. Monogr. (N.S.), 26, Oxford Univ. Press, Oxford, 2002 | MR | Zbl
[4] S. Smale, “The fundamental theorem of algebra and complexity theory”, Bull. Amer. Math. Soc. (N.S.), 4:1 (1981), 1–36 | DOI | MR | Zbl
[5] V. Dubinin, T. Sugawa, “Dual mean value problem for complex polynomials”, Proc. Japan Acad. Ser. A Math. Sci., 85:9 (2009), 135–137 | DOI
[6] W. K. Hayman, Multivalent Functions, Cambridge Tracts in Math., 110, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl
[7] V. N. Dubinin, “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, UMN, 49:1 (1994), 3–76 | MR | Zbl
[8] A. F. Beardon, D. Minda, T. W. Ng, “Smale's mean value conjecture and the hyperbolic metric”, Math. Ann., 322:4 (2002), 623–632 | MR | Zbl
[9] V. N. Dubinin, “O pokrytii vertikalnykh otrezkov pri konformnom otobrazhenii”, Matem. zametki, 28:1 (1980), 25–32 | MR | Zbl
[10] A. Eremenko, “A Markov-type inequality for arbitrary plane continua”, Proc. Amer. Math. Soc., 135:5 (2007), 1505–1510 | DOI | MR | Zbl