On the Finite-Increment Theorem for Complex Polynomials
Matematičeskie zametki, Tome 88 (2010) no. 5, pp. 673-682.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary polynomial $P$ of degree at most $n$ and any points $z_1$ and $z_2$ on the complex plane, we establish estimates of the form $$ |P(z_1)-P(z_2)|\ge d_n|P'(z_1)||z_1-\zeta|, $$ where $\zeta$ is one of the roots of the equation $P(z)=P(z_2)$, and $d_n$ is a positive constant depending only on the number $n$.
Mots-clés : complex polynomial
Keywords: finite-increment theorem, Chebyshev polynomial, Zhukovskii function, Markov's inequality, conformal mapping, covering theorem, Steiner symmetrization, conformal capacity.
@article{MZM_2010_88_5_a3,
     author = {V. N. Dubinin},
     title = {On the {Finite-Increment} {Theorem} for {Complex} {Polynomials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {673--682},
     publisher = {mathdoc},
     volume = {88},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a3/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - On the Finite-Increment Theorem for Complex Polynomials
JO  - Matematičeskie zametki
PY  - 2010
SP  - 673
EP  - 682
VL  - 88
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a3/
LA  - ru
ID  - MZM_2010_88_5_a3
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T On the Finite-Increment Theorem for Complex Polynomials
%J Matematičeskie zametki
%D 2010
%P 673-682
%V 88
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a3/
%G ru
%F MZM_2010_88_5_a3
V. N. Dubinin. On the Finite-Increment Theorem for Complex Polynomials. Matematičeskie zametki, Tome 88 (2010) no. 5, pp. 673-682. http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a3/

[1] G. V. Milovanović, D. S. Mitrinović, Th. M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Sci. Publ., Singapore, 1994 | MR | Zbl

[2] P. Borwein, T. Erdélyi, Polynomials and Polynomial Inequalities, Grad. Texts in Math., 161, Springer-Verlag, New York, NY, 1995 | MR | Zbl

[3] Q. I. Rahman, G. Schmeisser, Analytic Theory of Polynomials, London Math. Soc. Monogr. (N.S.), 26, Oxford Univ. Press, Oxford, 2002 | MR | Zbl

[4] S. Smale, “The fundamental theorem of algebra and complexity theory”, Bull. Amer. Math. Soc. (N.S.), 4:1 (1981), 1–36 | DOI | MR | Zbl

[5] V. Dubinin, T. Sugawa, “Dual mean value problem for complex polynomials”, Proc. Japan Acad. Ser. A Math. Sci., 85:9 (2009), 135–137 | DOI

[6] W. K. Hayman, Multivalent Functions, Cambridge Tracts in Math., 110, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl

[7] V. N. Dubinin, “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, UMN, 49:1 (1994), 3–76 | MR | Zbl

[8] A. F. Beardon, D. Minda, T. W. Ng, “Smale's mean value conjecture and the hyperbolic metric”, Math. Ann., 322:4 (2002), 623–632 | MR | Zbl

[9] V. N. Dubinin, “O pokrytii vertikalnykh otrezkov pri konformnom otobrazhenii”, Matem. zametki, 28:1 (1980), 25–32 | MR | Zbl

[10] A. Eremenko, “A Markov-type inequality for arbitrary plane continua”, Proc. Amer. Math. Soc., 135:5 (2007), 1505–1510 | DOI | MR | Zbl