Commuting and Centralizing Generalized Derivations on Lie Ideals in Prime Rings
Matematičeskie zametki, Tome 88 (2010) no. 5, pp. 778-791

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a noncommutative prime ring of characteristic different from $2$, $U$ the Utumi quotient ring of $R$, $C$ the extended centroid of $R$, and $L$ a noncentral Lie ideal of $R$. If $F$ and $G$ are generalized derivations of $R$ and $k\ge1$ a fixed integer such that $[F(x),x]_kx-x[G(x),x]_k=0$ for any $x\in L$, then one of the following holds: 1) either there exists an $a\in U$ and an $\alpha\in C$ such that $F(x)=xa$ and $G(x)=(a+\alpha)x$ for all $x\in R$; 2) or $R$ satisfies the standard identity $s_4(x_1,\dots,x_4)$ and one of the following conclusions occurs: \begin{itemize} (a) there exist $a,b,c,q\in U$, such that $a-b+c-q\in C$ and $F(x)=ax+xb$, $G(x)=cx+xq$ for all $x\in R$; (b) there exist $a,b,c\in U$ and a derivation $d$ of $U$ such that $F(x)=ax+d(x)$ and $G(x)=bx+xc-d(x)$ for all $x\in R$, with $a+b-c\in C$. \end{itemize}
Keywords: prime ring, derivation, generalized derivation, differential identity, (hyper-)centralizing map, generalized polynomial identity.
Mots-clés : utumi quotient ring
@article{MZM_2010_88_5_a12,
     author = {V. De Filippis and F. Rania},
     title = {Commuting and {Centralizing} {Generalized} {Derivations} on {Lie} {Ideals} in {Prime} {Rings}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {778--791},
     publisher = {mathdoc},
     volume = {88},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a12/}
}
TY  - JOUR
AU  - V. De Filippis
AU  - F. Rania
TI  - Commuting and Centralizing Generalized Derivations on Lie Ideals in Prime Rings
JO  - Matematičeskie zametki
PY  - 2010
SP  - 778
EP  - 791
VL  - 88
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a12/
LA  - ru
ID  - MZM_2010_88_5_a12
ER  - 
%0 Journal Article
%A V. De Filippis
%A F. Rania
%T Commuting and Centralizing Generalized Derivations on Lie Ideals in Prime Rings
%J Matematičeskie zametki
%D 2010
%P 778-791
%V 88
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a12/
%G ru
%F MZM_2010_88_5_a12
V. De Filippis; F. Rania. Commuting and Centralizing Generalized Derivations on Lie Ideals in Prime Rings. Matematičeskie zametki, Tome 88 (2010) no. 5, pp. 778-791. http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a12/