Commuting and Centralizing Generalized Derivations on Lie Ideals in Prime Rings
Matematičeskie zametki, Tome 88 (2010) no. 5, pp. 778-791.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a noncommutative prime ring of characteristic different from $2$, $U$ the Utumi quotient ring of $R$, $C$ the extended centroid of $R$, and $L$ a noncentral Lie ideal of $R$. If $F$ and $G$ are generalized derivations of $R$ and $k\ge1$ a fixed integer such that $[F(x),x]_kx-x[G(x),x]_k=0$ for any $x\in L$, then one of the following holds: 1) either there exists an $a\in U$ and an $\alpha\in C$ such that $F(x)=xa$ and $G(x)=(a+\alpha)x$ for all $x\in R$; 2) or $R$ satisfies the standard identity $s_4(x_1,\dots,x_4)$ and one of the following conclusions occurs: \begin{itemize} (a) there exist $a,b,c,q\in U$, such that $a-b+c-q\in C$ and $F(x)=ax+xb$, $G(x)=cx+xq$ for all $x\in R$; (b) there exist $a,b,c\in U$ and a derivation $d$ of $U$ such that $F(x)=ax+d(x)$ and $G(x)=bx+xc-d(x)$ for all $x\in R$, with $a+b-c\in C$. \end{itemize}
Keywords: prime ring, derivation, generalized derivation, differential identity, (hyper-)centralizing map, generalized polynomial identity.
Mots-clés : utumi quotient ring
@article{MZM_2010_88_5_a12,
     author = {V. De Filippis and F. Rania},
     title = {Commuting and {Centralizing} {Generalized} {Derivations} on {Lie} {Ideals} in {Prime} {Rings}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {778--791},
     publisher = {mathdoc},
     volume = {88},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a12/}
}
TY  - JOUR
AU  - V. De Filippis
AU  - F. Rania
TI  - Commuting and Centralizing Generalized Derivations on Lie Ideals in Prime Rings
JO  - Matematičeskie zametki
PY  - 2010
SP  - 778
EP  - 791
VL  - 88
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a12/
LA  - ru
ID  - MZM_2010_88_5_a12
ER  - 
%0 Journal Article
%A V. De Filippis
%A F. Rania
%T Commuting and Centralizing Generalized Derivations on Lie Ideals in Prime Rings
%J Matematičeskie zametki
%D 2010
%P 778-791
%V 88
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a12/
%G ru
%F MZM_2010_88_5_a12
V. De Filippis; F. Rania. Commuting and Centralizing Generalized Derivations on Lie Ideals in Prime Rings. Matematičeskie zametki, Tome 88 (2010) no. 5, pp. 778-791. http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a12/

[1] T.-K. Lee, “Generalized derivations of left faithful rings”, Comm. Algebra, 27:8 (1999), 4057–4073 | DOI | MR | Zbl

[2] B. Hvala, “Generalized derivations in rings”, Comm. Algebra, 26:4 (1998), 1147–1166 | DOI | MR | Zbl

[3] E. C. Posner, “Derivations in prime rings”, Proc. Amer. Math. Soc., 8 (1957), 1093–1100 | MR | Zbl

[4] W. S. Martindale III, “Prime rings satisfying a generalized polynomial identity”, Algebra, 12:4 (1969), 576–584 | DOI | MR | Zbl

[5] M. Brešar, “Commuting maps: a survey”, Taiwanese J. Math., 8:3 (2004), 361–397 | MR | Zbl

[6] C. Lanski, “Differential identities, Lie ideals, and Posner's theorems”, Pacific J. Math., 134:2 (1988), 275–297 | MR | Zbl

[7] M. Brešar, C. R. Miers, “Commuting maps on Lie ideals”, Comm. Algebra, 23:14 (1995), 5539–5553 | DOI | MR | Zbl

[8] C. Lanski, “An Engel condition with derivation”, Proc. Amer. Math. Soc., 118:3 (1993), 731–734 | MR | Zbl

[9] N. Argaç, L. Carini, V. De Filippis, “An Engel condition with generalized derivations on Lie ideals”, Taiwanese J. Math., 12:2 (2008), 419–433 | MR | Zbl

[10] V. K. Kharchenko, “Differential identities of prime rings Nuzhno russkoe nazvanie!!!”, Algebra i logika, 17:2 (1978), 220–238 | MR | Zbl

[11] K. I. Beidar, W. S. Martindale III, A. V. Mikhalev, Rings with Generalized Identities, Monogr. Textbooks Pure Appl. Math., 196, Marcel Dekker, New York, NY, 1996 | MR | Zbl

[12] T. K. Lee, “Semiprime rings with differential identities”, Bull. Inst. Math. Acad. Sinica, 20:1 (1992), 27–38 | MR | Zbl

[13] K. I. Beidar, “Koltsa s obobschennymi tozhdestvami. III”, Vestnik Mosk. un-ta. Ser. 1. Matem., mekh., 1978, no. 4, 66–73 | MR | Zbl

[14] C.-L. Chuang, “GPIs having coefficients in Utumi quotient rings”, Proc. Amer. Math. Soc., 103:3 (1988), 723–728 | MR | Zbl

[15] J. Bergen, I. N. Herstein, J. W. Kerr, “Lie ideals and derivations of prime rings”, J. Algebra, 71:1 (1981), 259–267 | DOI | MR | Zbl

[16] T. S. Erickson, W. S. Martindale III, J. M. Osborn, “Prime nonassociative algebras”, Pacific J. Math., 60:1 (1975), 49–63 | MR | Zbl

[17] W. S. Martindale III, “Prime rings satisfying a generalized polynomial identity”, J. Algebra, 12:4 (1969), 576–584 | DOI | MR | Zbl

[18] C. Faith, Y. Utumi, “On a new proof of Litoff's theorem”, Acta Math. Acad. Sci. Hungar, 14:3-4 (1963), 369–371 | DOI | MR | Zbl

[19] T.-L. Wong, “Derivations with power-central values on multilinear polynomials”, Algebra Colloq., 3:4 (1996), 369–378 | MR | Zbl

[20] I. N. Herstein, Topics in Ring Theory, Univ. Chicago Press, Chicago, IL, 1969 | MR | Zbl

[21] O. M. Di Vincenzo, “On the $n$th centralizer of a Lie ideal”, Boll. Un. Mat. Ital. A (7), 3:1 (1989), 77–85 | MR | Zbl

[22] C. Lanski, S. Montgomery, “Lie structure of prime rings of characteristic 2”, Pacific J. Math., 42:1 (1972), 117–136 | MR | Zbl