Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_88_5_a12, author = {V. De Filippis and F. Rania}, title = {Commuting and {Centralizing} {Generalized} {Derivations} on {Lie} {Ideals} in {Prime} {Rings}}, journal = {Matemati\v{c}eskie zametki}, pages = {778--791}, publisher = {mathdoc}, volume = {88}, number = {5}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a12/} }
TY - JOUR AU - V. De Filippis AU - F. Rania TI - Commuting and Centralizing Generalized Derivations on Lie Ideals in Prime Rings JO - Matematičeskie zametki PY - 2010 SP - 778 EP - 791 VL - 88 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a12/ LA - ru ID - MZM_2010_88_5_a12 ER -
V. De Filippis; F. Rania. Commuting and Centralizing Generalized Derivations on Lie Ideals in Prime Rings. Matematičeskie zametki, Tome 88 (2010) no. 5, pp. 778-791. http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a12/
[1] T.-K. Lee, “Generalized derivations of left faithful rings”, Comm. Algebra, 27:8 (1999), 4057–4073 | DOI | MR | Zbl
[2] B. Hvala, “Generalized derivations in rings”, Comm. Algebra, 26:4 (1998), 1147–1166 | DOI | MR | Zbl
[3] E. C. Posner, “Derivations in prime rings”, Proc. Amer. Math. Soc., 8 (1957), 1093–1100 | MR | Zbl
[4] W. S. Martindale III, “Prime rings satisfying a generalized polynomial identity”, Algebra, 12:4 (1969), 576–584 | DOI | MR | Zbl
[5] M. Brešar, “Commuting maps: a survey”, Taiwanese J. Math., 8:3 (2004), 361–397 | MR | Zbl
[6] C. Lanski, “Differential identities, Lie ideals, and Posner's theorems”, Pacific J. Math., 134:2 (1988), 275–297 | MR | Zbl
[7] M. Brešar, C. R. Miers, “Commuting maps on Lie ideals”, Comm. Algebra, 23:14 (1995), 5539–5553 | DOI | MR | Zbl
[8] C. Lanski, “An Engel condition with derivation”, Proc. Amer. Math. Soc., 118:3 (1993), 731–734 | MR | Zbl
[9] N. Argaç, L. Carini, V. De Filippis, “An Engel condition with generalized derivations on Lie ideals”, Taiwanese J. Math., 12:2 (2008), 419–433 | MR | Zbl
[10] V. K. Kharchenko, “Differential identities of prime rings Nuzhno russkoe nazvanie!!!”, Algebra i logika, 17:2 (1978), 220–238 | MR | Zbl
[11] K. I. Beidar, W. S. Martindale III, A. V. Mikhalev, Rings with Generalized Identities, Monogr. Textbooks Pure Appl. Math., 196, Marcel Dekker, New York, NY, 1996 | MR | Zbl
[12] T. K. Lee, “Semiprime rings with differential identities”, Bull. Inst. Math. Acad. Sinica, 20:1 (1992), 27–38 | MR | Zbl
[13] K. I. Beidar, “Koltsa s obobschennymi tozhdestvami. III”, Vestnik Mosk. un-ta. Ser. 1. Matem., mekh., 1978, no. 4, 66–73 | MR | Zbl
[14] C.-L. Chuang, “GPIs having coefficients in Utumi quotient rings”, Proc. Amer. Math. Soc., 103:3 (1988), 723–728 | MR | Zbl
[15] J. Bergen, I. N. Herstein, J. W. Kerr, “Lie ideals and derivations of prime rings”, J. Algebra, 71:1 (1981), 259–267 | DOI | MR | Zbl
[16] T. S. Erickson, W. S. Martindale III, J. M. Osborn, “Prime nonassociative algebras”, Pacific J. Math., 60:1 (1975), 49–63 | MR | Zbl
[17] W. S. Martindale III, “Prime rings satisfying a generalized polynomial identity”, J. Algebra, 12:4 (1969), 576–584 | DOI | MR | Zbl
[18] C. Faith, Y. Utumi, “On a new proof of Litoff's theorem”, Acta Math. Acad. Sci. Hungar, 14:3-4 (1963), 369–371 | DOI | MR | Zbl
[19] T.-L. Wong, “Derivations with power-central values on multilinear polynomials”, Algebra Colloq., 3:4 (1996), 369–378 | MR | Zbl
[20] I. N. Herstein, Topics in Ring Theory, Univ. Chicago Press, Chicago, IL, 1969 | MR | Zbl
[21] O. M. Di Vincenzo, “On the $n$th centralizer of a Lie ideal”, Boll. Un. Mat. Ital. A (7), 3:1 (1989), 77–85 | MR | Zbl
[22] C. Lanski, S. Montgomery, “Lie structure of prime rings of characteristic 2”, Pacific J. Math., 42:1 (1972), 117–136 | MR | Zbl