Robust Stability of a Class of Positive Quasi-Polynomials in Banach Spaces
Matematičeskie zametki, Tome 88 (2010) no. 5, pp. 651-661.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the stability radii of positive quasipolynomials associated with linear functional difference equations in infinite-dimensional spaces. It is shown that the positive, real and complex stability radii coincide. Moreover, explicit formulas are derived for these stability radii and illustrated by a simple example.
Keywords: stability radius, parameter perturbation, Banach lattice, Perron–Frobenius theorem.
Mots-clés : positive quasipolynomial
@article{MZM_2010_88_5_a1,
     author = {Bui The Anh and Nguyen Khoa Son},
     title = {Robust {Stability} of a {Class} of {Positive} {Quasi-Polynomials} in {Banach} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {651--661},
     publisher = {mathdoc},
     volume = {88},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a1/}
}
TY  - JOUR
AU  - Bui The Anh
AU  - Nguyen Khoa Son
TI  - Robust Stability of a Class of Positive Quasi-Polynomials in Banach Spaces
JO  - Matematičeskie zametki
PY  - 2010
SP  - 651
EP  - 661
VL  - 88
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a1/
LA  - ru
ID  - MZM_2010_88_5_a1
ER  - 
%0 Journal Article
%A Bui The Anh
%A Nguyen Khoa Son
%T Robust Stability of a Class of Positive Quasi-Polynomials in Banach Spaces
%J Matematičeskie zametki
%D 2010
%P 651-661
%V 88
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a1/
%G ru
%F MZM_2010_88_5_a1
Bui The Anh; Nguyen Khoa Son. Robust Stability of a Class of Positive Quasi-Polynomials in Banach Spaces. Matematičeskie zametki, Tome 88 (2010) no. 5, pp. 651-661. http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a1/

[1] A. Fischer, “Stability radii of infinite-dimensional positive systems”, Math. Control Signals Systems, 10:3 (1997), 223–236 | DOI | MR | Zbl

[2] D. Hinrichsen, A. J. Pritchard, Mathematical Systems Theory, v. 1, Texts Appl. Math., 48, Modelling, State Space Analysis, Stability and Robustness, Springer-Verlag, Berlin, 2005 | MR | Zbl

[3] B. T. Anh, N. K. Son, “Stability radii of positive higher order difference system in infinite dimensional spaces”, Systems Control Lett., 57:10 (2008), 822–827 | MR | Zbl

[4] B. T. Anh, N. K. Son, D. D. X. Thanh, “Stability radii of delay difference systems under affine parameter perturbations in infinite dimensional spaces”, Appl. Math. Comput., 202:2 (2008), 562–570 | MR | Zbl

[5] B. T. Anh, N. K. Son, “Stability radii of positive linear systems under affine parameter perturbations in infinite dimensional spaces”, Positivity, 12:4 (2008), 677–690 | MR | Zbl

[6] B. T. Anh, N. K. Son, D. D. X. Thanh, “Robust stability of Metzler operator and delay equation in $L^p([-h,0];X)$”, Vietnam J. Math., 34:3 (2006), 357–368 | MR | Zbl

[7] A. V. Bulatov, F. Daimond, “Otsenki veschestvennogo strukturnogo radiusa ustoichivosti lineinykh beskonechnomernykh sistem”, Avtomat. i telemekh., 2002, no. 5, 24–33 | MR | Zbl

[8] N. A. Bobylev, A. V. Bulatov, “Otsenka veschestvennogo radiusa ustoichivosti lineinykh beskonechnomernykh sistem s nepreryvnym vremenem”, Nelineinaya dinamika i upravlenie, v. 1, Fizmatlit, M., 2001, 77–86 | MR | Zbl

[9] S. Clark, Yu. Latushkin, S. Montgomery-Smith, T. Randolph, “Stability radius and internal versus external stability in Banach spaces: an evolution semigroup approach”, SIAM J. Control Optim., 38:6 (2000), 1757–1793 | DOI | MR | Zbl

[10] D. Hinrichsen, A. J. Pritchard, “Robust stability of linear evolution operators on Banach spaces”, SIAM J. Control Optim., 32:6 (1994), 1503–1541 | DOI | MR | Zbl

[11] D. Hinrichsen, A. J. Pritchard, “Stability radii of linear systems”, Systems Control Lett., 7:1 (1986), 1–10 | DOI | MR | Zbl

[12] M. Adimy, K. Ezzinbi, “Local existence and linearized stability for partial functional-differential equations”, Dynam. Systems Appl., 7:3 (1998), 389–403 | MR | Zbl

[13] M. Adimy, K. Ezzinbi, “A class of linear partial neutral functional-differential equations with nondense domain”, J. Differential Equations, 147:2 (1998), 285–332 | DOI | MR | Zbl

[14] J. K. Hale, Functional Differential Equations, Appl. Math. Sci., 3, Springer-Verlag, New York, 1971 | MR | Zbl

[15] J. K. Hale, S. M. Verduyn Lunel, “Strong stabilization of neutral functional differential equations”, IMA J. Math. Control Inform., 19:1–2 (2002), 5–23 | DOI | MR | Zbl

[16] O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel, H.-O. Walther, Delay Equations. Functional-, Complex-, and Nonlinear Analysis, Appl. Math. Sci., 110, Springer-Verlag, Berlin, 1995 | MR | Zbl

[17] W. Michiels, T. Vyhlídal, “An eigenvalue based approach for the stabilization of linear time-delay systems of neutral type”, Automatica J. IFAC, 41:6 (2005), 991–998 | DOI | MR | Zbl

[18] H. H. Schaefer, Banach Lattices and Positive Operators, Grundlehren Math. Wiss., 215, Springer-Verlag, Berlin, 1974 | MR | Zbl

[19] P. Meyer-Nieberg, Banach Lattices, Universitext, Springer-Verlag, Berlin, 1991 | MR | Zbl

[20] A. C. Zaanen, Introduction to Operator Theory in Riesz Spaces, Springer-Verlag, Berlin, 1977 | MR | Zbl