Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_88_5_a1, author = {Bui The Anh and Nguyen Khoa Son}, title = {Robust {Stability} of a {Class} of {Positive} {Quasi-Polynomials} in {Banach} {Spaces}}, journal = {Matemati\v{c}eskie zametki}, pages = {651--661}, publisher = {mathdoc}, volume = {88}, number = {5}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a1/} }
TY - JOUR AU - Bui The Anh AU - Nguyen Khoa Son TI - Robust Stability of a Class of Positive Quasi-Polynomials in Banach Spaces JO - Matematičeskie zametki PY - 2010 SP - 651 EP - 661 VL - 88 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a1/ LA - ru ID - MZM_2010_88_5_a1 ER -
Bui The Anh; Nguyen Khoa Son. Robust Stability of a Class of Positive Quasi-Polynomials in Banach Spaces. Matematičeskie zametki, Tome 88 (2010) no. 5, pp. 651-661. http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a1/
[1] A. Fischer, “Stability radii of infinite-dimensional positive systems”, Math. Control Signals Systems, 10:3 (1997), 223–236 | DOI | MR | Zbl
[2] D. Hinrichsen, A. J. Pritchard, Mathematical Systems Theory, v. 1, Texts Appl. Math., 48, Modelling, State Space Analysis, Stability and Robustness, Springer-Verlag, Berlin, 2005 | MR | Zbl
[3] B. T. Anh, N. K. Son, “Stability radii of positive higher order difference system in infinite dimensional spaces”, Systems Control Lett., 57:10 (2008), 822–827 | MR | Zbl
[4] B. T. Anh, N. K. Son, D. D. X. Thanh, “Stability radii of delay difference systems under affine parameter perturbations in infinite dimensional spaces”, Appl. Math. Comput., 202:2 (2008), 562–570 | MR | Zbl
[5] B. T. Anh, N. K. Son, “Stability radii of positive linear systems under affine parameter perturbations in infinite dimensional spaces”, Positivity, 12:4 (2008), 677–690 | MR | Zbl
[6] B. T. Anh, N. K. Son, D. D. X. Thanh, “Robust stability of Metzler operator and delay equation in $L^p([-h,0];X)$”, Vietnam J. Math., 34:3 (2006), 357–368 | MR | Zbl
[7] A. V. Bulatov, F. Daimond, “Otsenki veschestvennogo strukturnogo radiusa ustoichivosti lineinykh beskonechnomernykh sistem”, Avtomat. i telemekh., 2002, no. 5, 24–33 | MR | Zbl
[8] N. A. Bobylev, A. V. Bulatov, “Otsenka veschestvennogo radiusa ustoichivosti lineinykh beskonechnomernykh sistem s nepreryvnym vremenem”, Nelineinaya dinamika i upravlenie, v. 1, Fizmatlit, M., 2001, 77–86 | MR | Zbl
[9] S. Clark, Yu. Latushkin, S. Montgomery-Smith, T. Randolph, “Stability radius and internal versus external stability in Banach spaces: an evolution semigroup approach”, SIAM J. Control Optim., 38:6 (2000), 1757–1793 | DOI | MR | Zbl
[10] D. Hinrichsen, A. J. Pritchard, “Robust stability of linear evolution operators on Banach spaces”, SIAM J. Control Optim., 32:6 (1994), 1503–1541 | DOI | MR | Zbl
[11] D. Hinrichsen, A. J. Pritchard, “Stability radii of linear systems”, Systems Control Lett., 7:1 (1986), 1–10 | DOI | MR | Zbl
[12] M. Adimy, K. Ezzinbi, “Local existence and linearized stability for partial functional-differential equations”, Dynam. Systems Appl., 7:3 (1998), 389–403 | MR | Zbl
[13] M. Adimy, K. Ezzinbi, “A class of linear partial neutral functional-differential equations with nondense domain”, J. Differential Equations, 147:2 (1998), 285–332 | DOI | MR | Zbl
[14] J. K. Hale, Functional Differential Equations, Appl. Math. Sci., 3, Springer-Verlag, New York, 1971 | MR | Zbl
[15] J. K. Hale, S. M. Verduyn Lunel, “Strong stabilization of neutral functional differential equations”, IMA J. Math. Control Inform., 19:1–2 (2002), 5–23 | DOI | MR | Zbl
[16] O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel, H.-O. Walther, Delay Equations. Functional-, Complex-, and Nonlinear Analysis, Appl. Math. Sci., 110, Springer-Verlag, Berlin, 1995 | MR | Zbl
[17] W. Michiels, T. Vyhlídal, “An eigenvalue based approach for the stabilization of linear time-delay systems of neutral type”, Automatica J. IFAC, 41:6 (2005), 991–998 | DOI | MR | Zbl
[18] H. H. Schaefer, Banach Lattices and Positive Operators, Grundlehren Math. Wiss., 215, Springer-Verlag, Berlin, 1974 | MR | Zbl
[19] P. Meyer-Nieberg, Banach Lattices, Universitext, Springer-Verlag, Berlin, 1991 | MR | Zbl
[20] A. C. Zaanen, Introduction to Operator Theory in Riesz Spaces, Springer-Verlag, Berlin, 1977 | MR | Zbl