Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_88_5_a0, author = {M. B. Abrosimov}, title = {On the {Complexity} of {Some} {Problems} {Related} to {Graph} {Extensions}}, journal = {Matemati\v{c}eskie zametki}, pages = {643--650}, publisher = {mathdoc}, volume = {88}, number = {5}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a0/} }
M. B. Abrosimov. On the Complexity of Some Problems Related to Graph Extensions. Matematičeskie zametki, Tome 88 (2010) no. 5, pp. 643-650. http://geodesic.mathdoc.fr/item/MZM_2010_88_5_a0/
[1] J. P. Hayes, “A graph model for fault-tolerant computing systems”, IEEE Trans. Computers, C-25, no. 9, 1976, 875–884 | MR | Zbl
[2] F. Harary, J. P. Hayes, “Edge fault tolerance in graphs”, Networks, 23, no. 2, 1993, 135–142 | MR | Zbl
[3] F. Harary, J. P. Hayes, “Node fault tolerance in graphs”, Networks, 27, no. 1, 1996, 19–23 | MR | Zbl
[4] A. M. Bogomolov, V. N. Salii, Algebraicheskie osnovy teorii diskretnykh sistem, Nauka, M., 1997 | MR | Zbl
[5] M. Geri, D. Dzhonson, Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982 | MR | Zbl
[6] Kh. Papadimitriu, K. Staiglits, Kombinatornaya optimizatsiya. Algoritmy i slozhnost, Mir, M., 1985 | MR | Zbl
[7] M. B. Abrosimov, “Minimalnye rasshireniya grafov”, Novye informatsionnye tekhnologii v issledovanii diskretnykh struktur, TNTs SO RAN “Spektr”, Tomsk, 2000, 59–64
[8] V. N. Salii, “Dokazatelstva s nulevym razglasheniem v zadachakh o rasshireniyakh grafov”, Vestn. Tomsk. gos. un-ta. Prilozhenie, no. 6, 2003, 63–65
[9] M. B. Abrosimov, “Minimalnye rasshireniya tranzitivnykh turnirov”, Vestn. Tomsk. gos. un-ta. Prilozhenie, no. 17, 2006, 187–190
[10] M. B. Abrosimov, “Minimalnye rasshireniya dopolnenii grafov”, Teoreticheskie problemy informatiki i ee prilozhenii, Vyp. 4, SGU, Saratov, 2001, 11–19
[11] M. B. Abrosimov, “Nekotorye voprosy o minimalnykh rasshireniyakh grafov”, Izv. Sarat. un-ta. Ser. Matematika. Mekhanika. Informatika, 6, 2006, 86–91