Estimates of Character Sums in Finite Fields
Matematičeskie zametki, Tome 88 (2010) no. 4, pp. 529-542.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove analogs of the Burgess estimates for character sums over $n$-dimensional segments in the field $\mathbb F_{p^n}$.
Keywords: multiplicative character, character sum, Burgess estimate, finite field, polar lattice, Weil estimate, Hölder's inequality.
@article{MZM_2010_88_4_a4,
     author = {S. V. Konyagin},
     title = {Estimates of {Character} {Sums} in {Finite} {Fields}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {529--542},
     publisher = {mathdoc},
     volume = {88},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a4/}
}
TY  - JOUR
AU  - S. V. Konyagin
TI  - Estimates of Character Sums in Finite Fields
JO  - Matematičeskie zametki
PY  - 2010
SP  - 529
EP  - 542
VL  - 88
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a4/
LA  - ru
ID  - MZM_2010_88_4_a4
ER  - 
%0 Journal Article
%A S. V. Konyagin
%T Estimates of Character Sums in Finite Fields
%J Matematičeskie zametki
%D 2010
%P 529-542
%V 88
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a4/
%G ru
%F MZM_2010_88_4_a4
S. V. Konyagin. Estimates of Character Sums in Finite Fields. Matematičeskie zametki, Tome 88 (2010) no. 4, pp. 529-542. http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a4/

[1] D. A. Burgess, “On character sums and primitive roots”, Proc. London Math. Soc. (3), 12 (1962), 179–192 | DOI | MR | Zbl

[2] D. A. Burgess, “Character sums and primitive roots in finite fields”, Proc. Lond. Math. Soc. (3), 17 (1967), 11–25 | DOI | MR | Zbl

[3] A. A. Karatsuba, “Summy kharakterov i pervoobraznye korni v konechnykh polyakh”, DAN SSSR, 180:6 (1968), 1287–1289 | MR | Zbl

[4] A. A. Karatsuba, “Ob otsenkakh summ kharakterov”, Izv. AN SSSR. Ser. matem., 34:1 (1970), 20–30 | MR | Zbl

[5] H. Davenport, D. J. Lewis, “Character sums and primitive roots in finite fields”, Rend. Circ. Mat. Palermo (2), 12:2 (1963), 129–136 | DOI | MR | Zbl

[6] M.-Ch. Chang, “On a question of Davenport and Lewis and new character sum bounds in finite fields”, Duke Math. J., 145:3 (2008), 409–442 | DOI | MR | Zbl

[7] M.-Ch. Chang, Burgess inequality in $\mathbb F_{p^2}$, Preprint, 2009

[8] T. Tao, V. Vu, Additive Combinatorics, Cambridge Stud. Adv. Math., 105, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl

[9] W. Banaszczyk, “Inequalities for convex bodies and polar reciprocal lattices in $\mathbb R^n$”, Discrete Comput. Geom., 13:2 (1995), 217–231 | DOI | MR | Zbl

[10] W. M. Schmidt, Equations over Finite Fields. An Elementary Approach, Lecture Notes in Math., 536, Springer-Verlag, Berlin, 1976 | DOI | MR | Zbl