Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_88_4_a4, author = {S. V. Konyagin}, title = {Estimates of {Character} {Sums} in {Finite} {Fields}}, journal = {Matemati\v{c}eskie zametki}, pages = {529--542}, publisher = {mathdoc}, volume = {88}, number = {4}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a4/} }
S. V. Konyagin. Estimates of Character Sums in Finite Fields. Matematičeskie zametki, Tome 88 (2010) no. 4, pp. 529-542. http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a4/
[1] D. A. Burgess, “On character sums and primitive roots”, Proc. London Math. Soc. (3), 12 (1962), 179–192 | DOI | MR | Zbl
[2] D. A. Burgess, “Character sums and primitive roots in finite fields”, Proc. Lond. Math. Soc. (3), 17 (1967), 11–25 | DOI | MR | Zbl
[3] A. A. Karatsuba, “Summy kharakterov i pervoobraznye korni v konechnykh polyakh”, DAN SSSR, 180:6 (1968), 1287–1289 | MR | Zbl
[4] A. A. Karatsuba, “Ob otsenkakh summ kharakterov”, Izv. AN SSSR. Ser. matem., 34:1 (1970), 20–30 | MR | Zbl
[5] H. Davenport, D. J. Lewis, “Character sums and primitive roots in finite fields”, Rend. Circ. Mat. Palermo (2), 12:2 (1963), 129–136 | DOI | MR | Zbl
[6] M.-Ch. Chang, “On a question of Davenport and Lewis and new character sum bounds in finite fields”, Duke Math. J., 145:3 (2008), 409–442 | DOI | MR | Zbl
[7] M.-Ch. Chang, Burgess inequality in $\mathbb F_{p^2}$, Preprint, 2009
[8] T. Tao, V. Vu, Additive Combinatorics, Cambridge Stud. Adv. Math., 105, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl
[9] W. Banaszczyk, “Inequalities for convex bodies and polar reciprocal lattices in $\mathbb R^n$”, Discrete Comput. Geom., 13:2 (1995), 217–231 | DOI | MR | Zbl
[10] W. M. Schmidt, Equations over Finite Fields. An Elementary Approach, Lecture Notes in Math., 536, Springer-Verlag, Berlin, 1976 | DOI | MR | Zbl