On Monochromatic Solutions of Some Nonlinear Equations in $\mathbb Z/p\mathbb Z$
Matematičeskie zametki, Tome 88 (2010) no. 4, pp. 625-634 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let the set of positive integers be colored in an arbitrary way in finitely many colors (a “finite coloring”). Is it true that, in this case, there are $x,y\in\mathbb Z$ such that $x+y$, $xy$, and $x$ have the same color? This well-known problem of the Ramsey theory is still unsolved. In the present paper, we answer this question in the affirmative in the group $\mathbb Z/p\mathbb Z$, where $p$ is a prime, and obtain an even stronger density result.
Keywords: Ramsey theory, coloring, monochromatic solution, Dirichlet character, trigonometric sum, Cauchy–Bunyakovskii inequality.
Mots-clés : Fourier transform
@article{MZM_2010_88_4_a13,
     author = {I. D. Shkredov},
     title = {On {Monochromatic} {Solutions} of {Some} {Nonlinear} {Equations} in~$\mathbb Z/p\mathbb Z$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {625--634},
     year = {2010},
     volume = {88},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a13/}
}
TY  - JOUR
AU  - I. D. Shkredov
TI  - On Monochromatic Solutions of Some Nonlinear Equations in $\mathbb Z/p\mathbb Z$
JO  - Matematičeskie zametki
PY  - 2010
SP  - 625
EP  - 634
VL  - 88
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a13/
LA  - ru
ID  - MZM_2010_88_4_a13
ER  - 
%0 Journal Article
%A I. D. Shkredov
%T On Monochromatic Solutions of Some Nonlinear Equations in $\mathbb Z/p\mathbb Z$
%J Matematičeskie zametki
%D 2010
%P 625-634
%V 88
%N 4
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a13/
%G ru
%F MZM_2010_88_4_a13
I. D. Shkredov. On Monochromatic Solutions of Some Nonlinear Equations in $\mathbb Z/p\mathbb Z$. Matematičeskie zametki, Tome 88 (2010) no. 4, pp. 625-634. http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a13/

[1] R. L. Graham, B. L. Rothschild, J. H. Spencer, Ramsey Theory, Wiley-Intersci. Ser. Discrete Math. Optim., John Wiley Sons, New York, 1990 | MR | Zbl

[2] R. Rado, “Verallgemeinerung eines Satzes von van der Waerden mit Anwendungen auf ein Problem der Zahlentheorie”, Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl., 17 (1933), 589–596 | Zbl

[3] R. Rado, “Studien zur Kombinatorik”, Math. Z., 36:1 (1933), 424–470 | DOI | MR | Zbl

[4] R. Rado, “Some recent results in combinatorial analysis”, Comptes Rendus du Congres International des Mathematiciens, v. 2, Oslo, 1937, 20–21 | Zbl

[5] W. Deuber, “Partitionen und lineare Gleichungssysteme”, Math. Z., 133:2 (1973), 109–123 | DOI | MR | Zbl

[6] W. Deuber, “Partitions theorems for Abelian groups”, J. Combin. Theory Ser. A, 19:1 (1975), 95–108 | DOI | MR | Zbl

[7] I. Schur, “Über die Kongruenz $x^m+y^m\equiv z^m\pmod p$”, Deutsche Math. Ver., 25 (1916), 114–117 | Zbl

[8] N. Hindman, I. Leader, D. Strauss, “Open problems in partition regularity”, Combin. Probab. Comput., 12 (2003), 571–583 | DOI | MR | Zbl

[9] M. Beiglböck, V. Bergelson, N. Hindman, D. Strauss, “Multiplicative structures in additively large sets”, J. Combin. Theory Ser. A, 113:7 (2006), 1219–1242 | DOI | MR | Zbl

[10] M. Beiglböck, V. Bergelson, N. Hindman, D. Strauss, “Some new results in multiplicative and additive Ramsey theory”, Trans. Amer. Math. Soc., 360:2 (2008), 819–847 | MR | Zbl

[11] V. Bergelson, N. Hindman, I. Leader, “Additive and multiplicative Ramsey theory in the reals and the rationals”, J. Combin. Theory Ser. A, 85:1 (1999), 41–68 | DOI | MR | Zbl

[12] S. D. Adhikari, “A note on a question of Erdős”, Exposition. Math., 15:4 (1997), 367–371 | MR | Zbl

[13] T. C. Brown, V. Rödl, “Monochromatic solutions to equations with unit fractions”, Bull. Austral. Math. Soc., 43:3 (1991), 387–392 | DOI | MR | Zbl

[14] H. Lefmann, “On partition regular systems of equations”, J. Combin. Theory Ser. A, 58:1 (1991), 35–53 | DOI | MR | Zbl

[15] I. E. Shparlinski, On The Solvability of Bilinear Equations in Finite Fields, arXiv: math.NT/0708.2130

[16] A. Sárközy, “On sums and products of residues modulo $p$”, Acta Arith., 118:4 (2005), 403–409 | DOI | MR | Zbl

[17] M. Z. Garaev, V. Garcia, The Equation $x_1x_2=x_3x_4+\lambda$ in Fields of Prime Order and Applications, Preprint, 2007

[18] J. Bourgain, More on the Sum-Product Phenomenon in Prime Fields and its Applications, Preprint

[19] N. Hegyváry, F. Hennecart, Explicit Constructions of Extractors and Expanders, Preprint

[20] M. Z. Garaev, C.-Y. Shen, On the Size of the Set $A(A+1)$, arXiv: math.NT/0811.4206

[21] S. V. Konyagin, I. E. Shparlinski, Character Sums with Exponential Functions and their Applications, Cambridge Tracts in Math., 136, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[22] J. Johnsen, “On the distibution of powers in finite fields”, J. Reine Angew. Math., 251 (1971), 10–19 | MR | Zbl

[23] I. M. Vinogradov, Osnovy teorii chisel, Lan, SPb., 2004 | MR | Zbl

[24] W. T. Gowers, “A new proof of Szemerédi's theorem for arithmetic progressions of length four”, Geom. Funct. Anal., 8:3 (1998), 529–551 | MR | Zbl

[25] W. T. Gowers, “A new proof of Szemerédi's theorem”, Geom. Funct. Anal., 11:3 (2001), 465–588 | MR | Zbl