The Mean Number of Steps in the Euclidean Algorithm with Odd Incomplete Quotients
Matematičeskie zametki, Tome 88 (2010) no. 4, pp. 594-604.

Voir la notice de l'article provenant de la source Math-Net.Ru

The length of the continued-fraction expansion of a rational number with odd incomplete quotients is expressed via the Gauss–Kuzmin statistics for the classical continued fraction. This has made it possible to prove asymptotic formulas, similar to those already known for the classical Euclidean algorithm, for the mean length of the Euclidean algorithm with odd incomplete quotients.
Keywords: Euclidean algorithm, Gauss–Kuzmin statistics, continued-fraction expansion, dual fraction, incomplete quotient.
@article{MZM_2010_88_4_a10,
     author = {A. V. Ustinov},
     title = {The {Mean} {Number} of {Steps} in the {Euclidean} {Algorithm} with {Odd} {Incomplete} {Quotients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {594--604},
     publisher = {mathdoc},
     volume = {88},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a10/}
}
TY  - JOUR
AU  - A. V. Ustinov
TI  - The Mean Number of Steps in the Euclidean Algorithm with Odd Incomplete Quotients
JO  - Matematičeskie zametki
PY  - 2010
SP  - 594
EP  - 604
VL  - 88
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a10/
LA  - ru
ID  - MZM_2010_88_4_a10
ER  - 
%0 Journal Article
%A A. V. Ustinov
%T The Mean Number of Steps in the Euclidean Algorithm with Odd Incomplete Quotients
%J Matematičeskie zametki
%D 2010
%P 594-604
%V 88
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a10/
%G ru
%F MZM_2010_88_4_a10
A. V. Ustinov. The Mean Number of Steps in the Euclidean Algorithm with Odd Incomplete Quotients. Matematičeskie zametki, Tome 88 (2010) no. 4, pp. 594-604. http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a10/

[1] B. Vallée, “Dynamical analysis of a class of Euclidean algorithms”, Theoret. Comput. Sci., 297:1-3 (2003), 447–486 | DOI | MR | Zbl

[2] H. Heilbronn, “On the average length of a class of finite continued fractions”, Number Theory and Analysis, Papers in Honor of Edmund Landau, Plenum, New York, 1969, 87–96 | MR | Zbl

[3] J. W. Porter, “On a theorem of Heilbronn”, Mathematika, 22:1 (1975), 20–28 | DOI | MR | Zbl

[4] D. E. Knuth, “Evaluation of Porter's constant”, Comput. Math. Appl., 2:2 (1976), 137–139 | DOI | Zbl

[5] A. V. Ustinov, “Asimptoticheskoe povedenie pervogo i vtorogo momentov dlya chisla shagov v algoritme Evklida”, Izv. RAN. Ser. matem., 72:5 (2008), 189–224 | MR | Zbl

[6] G. J. Rieger, “Über die mittlere Schrittanzahl bei Divisionsalgorithmen”, Math. Nachr., 82:1 (1978), 157–180 | DOI | MR | Zbl

[7] G. J. Rieger, “Ein Heilbronn–Satz für Kettenbrüche mit ungeraden Teilnennern”, Math. Nachr., 101:1 (1981), 295–307 | DOI | MR | Zbl

[8] V. Baladi, B. Vallée, “Euclidean algorithms are Gaussian”, J. Number Theory, 110:2 (2005), 331–386 | DOI | MR | Zbl

[9] M. O. Avdeeva, “O statistikakh nepolnykh chastnykh konechnykh tsepnykh drobei”, Funkts. analiz i ego pril., 38:2 (2004), 1–11 | MR | Zbl

[10] D. E. Knut, Iskusstvo programmirovaniya. T. 2: Poluchislennye algoritmy, M., Vilyams, 2000 | MR | Zbl

[11] A. V. Ustinov, “O chisle reshenii sravneniya $xy\equiv l(\operatorname{mod}q)$ pod grafikom dvazhdy nepreryvno differentsiruemoi funktsii”, Algebra i analiz, 20:5 (2008), 186–216 | MR

[12] A. V. Ustinov, “O srednem chisle shagov v algoritme Evklida s vyborom minimalnogo po modulyu ostatka”, Matem. zametki, 85:1 (2009), 153–156 | MR | Zbl