Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_88_4_a10, author = {A. V. Ustinov}, title = {The {Mean} {Number} of {Steps} in the {Euclidean} {Algorithm} with {Odd} {Incomplete} {Quotients}}, journal = {Matemati\v{c}eskie zametki}, pages = {594--604}, publisher = {mathdoc}, volume = {88}, number = {4}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a10/} }
A. V. Ustinov. The Mean Number of Steps in the Euclidean Algorithm with Odd Incomplete Quotients. Matematičeskie zametki, Tome 88 (2010) no. 4, pp. 594-604. http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a10/
[1] B. Vallée, “Dynamical analysis of a class of Euclidean algorithms”, Theoret. Comput. Sci., 297:1-3 (2003), 447–486 | DOI | MR | Zbl
[2] H. Heilbronn, “On the average length of a class of finite continued fractions”, Number Theory and Analysis, Papers in Honor of Edmund Landau, Plenum, New York, 1969, 87–96 | MR | Zbl
[3] J. W. Porter, “On a theorem of Heilbronn”, Mathematika, 22:1 (1975), 20–28 | DOI | MR | Zbl
[4] D. E. Knuth, “Evaluation of Porter's constant”, Comput. Math. Appl., 2:2 (1976), 137–139 | DOI | Zbl
[5] A. V. Ustinov, “Asimptoticheskoe povedenie pervogo i vtorogo momentov dlya chisla shagov v algoritme Evklida”, Izv. RAN. Ser. matem., 72:5 (2008), 189–224 | MR | Zbl
[6] G. J. Rieger, “Über die mittlere Schrittanzahl bei Divisionsalgorithmen”, Math. Nachr., 82:1 (1978), 157–180 | DOI | MR | Zbl
[7] G. J. Rieger, “Ein Heilbronn–Satz für Kettenbrüche mit ungeraden Teilnennern”, Math. Nachr., 101:1 (1981), 295–307 | DOI | MR | Zbl
[8] V. Baladi, B. Vallée, “Euclidean algorithms are Gaussian”, J. Number Theory, 110:2 (2005), 331–386 | DOI | MR | Zbl
[9] M. O. Avdeeva, “O statistikakh nepolnykh chastnykh konechnykh tsepnykh drobei”, Funkts. analiz i ego pril., 38:2 (2004), 1–11 | MR | Zbl
[10] D. E. Knut, Iskusstvo programmirovaniya. T. 2: Poluchislennye algoritmy, M., Vilyams, 2000 | MR | Zbl
[11] A. V. Ustinov, “O chisle reshenii sravneniya $xy\equiv l(\operatorname{mod}q)$ pod grafikom dvazhdy nepreryvno differentsiruemoi funktsii”, Algebra i analiz, 20:5 (2008), 186–216 | MR
[12] A. V. Ustinov, “O srednem chisle shagov v algoritme Evklida s vyborom minimalnogo po modulyu ostatka”, Matem. zametki, 85:1 (2009), 153–156 | MR | Zbl