Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_88_4_a1, author = {O. N. German}, title = {Proof of the {Faug\`ere} {Criterion} for the {F5} {Algorithm}}, journal = {Matemati\v{c}eskie zametki}, pages = {502--510}, publisher = {mathdoc}, volume = {88}, number = {4}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a1/} }
O. N. German. Proof of the Faug\`ere Criterion for the F5 Algorithm. Matematičeskie zametki, Tome 88 (2010) no. 4, pp. 502-510. http://geodesic.mathdoc.fr/item/MZM_2010_88_4_a1/
[1] J.-Ch. Faugère, “A new efficient algorithm for computing Gröbner bases without reduction to zero (F5)”, Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2002, 75–83 | MR | Zbl
[2] J.-Ch. Faugère, Calcul efficace des bases de Gröbner et applications, Habilitation à diriger des recherches, Université Paris VI, 2007
[3] T. Stegers, Faugère's F5 algorithm revisited, Thesis for the degree of Diplom-Mathematiker, Technische Universität Darmstadt, 2005 http://wwwcsif.cs.ucdavis.edu/s̃tegers/
[4] J. M. Gash, On efficient computation of Gröbner bases, PhD Thesis, Indiana University, Bloomington, 2008
[5] C. Eder, On the criteria of the F5 algorithm, arXiv: math.AC/0804.2033
[6] C. Eder, J. Perry, F5C: a variant of Faugère's F5 algorithm with reduced Gröbner bases, arXiv: math.AC/0906.2967
[7] A. I. Zobnin, “Obobschenie algoritma F5 vychisleniya bazisa Grebnera polinomialnykh idealov”, Programmirovanie, 36:2 (2010), 75–82