On a Version of the Hua Problem
Matematičeskie zametki, Tome 88 (2010) no. 3, pp. 405-414.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that almost all natural numbers $n$ satisfying the congruence $n\equiv3\pmod{24}$, $n\not\equiv0\pmod5$, can be expressed as the sum of three squares of primes, at least one of which can be written as $1+x^2+y^2$.
Keywords: prime number, Hua problem, natural number, multiplicative function, Euler function, Cauchy inequality, Dirichlet $L$-series.
@article{MZM_2010_88_3_a8,
     author = {A. Kirkoryan and D. I. Tolev},
     title = {On a {Version} of the {Hua} {Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {405--414},
     publisher = {mathdoc},
     volume = {88},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a8/}
}
TY  - JOUR
AU  - A. Kirkoryan
AU  - D. I. Tolev
TI  - On a Version of the Hua Problem
JO  - Matematičeskie zametki
PY  - 2010
SP  - 405
EP  - 414
VL  - 88
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a8/
LA  - ru
ID  - MZM_2010_88_3_a8
ER  - 
%0 Journal Article
%A A. Kirkoryan
%A D. I. Tolev
%T On a Version of the Hua Problem
%J Matematičeskie zametki
%D 2010
%P 405-414
%V 88
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a8/
%G ru
%F MZM_2010_88_3_a8
A. Kirkoryan; D. I. Tolev. On a Version of the Hua Problem. Matematičeskie zametki, Tome 88 (2010) no. 3, pp. 405-414. http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a8/

[1] L.-K. Hua, “Some results in the additive prime number theory”, Quart. J. Math. Oxford Ser., 9 (1938), 68–80 | DOI | Zbl

[2] D. I. Tolev, “Additive problems with prime numbers of special type”, Acta Arith., 96:1 (2000), 53–88 ; “Corrigendum”, Acta Arith., 105:2 (2002), 205 | DOI | MR | Zbl | DOI | MR

[3] Yu. V. Linnik, “Asimptoticheskaya formula v additivnoi probleme Gardi–Littlvuda”, Izv. AN SSSR. Ser. matem., 24:5 (1960), 629–706 | MR | Zbl

[4] C. Hooley, “On the representation of a number as the sum of two squares and a prime”, Acta Math., 97 (1957), 189–210 | DOI | MR | Zbl

[5] Yu. V. Linnik, Dispersionnyi metod v binarnykh additivnykh zadachakh, Izd-vo LGU, Leningrad, 1961 | MR | Zbl

[6] K. Khooli, Primeneniya metodov resheta v teorii chisel, Nauka, M., 1987 | MR | Zbl

[7] K. Matomäki, “The binary Goldbach problem with one prime of the form $p=k^2+l^2+1$”, J. Number Theory, 128:5 (2008), 1195–1210 | DOI | MR | Zbl

[8] D. I. Tolev, “The binary Goldbach problem with arithmetic weights attached to one of the variables”, Acta Arith., 142:2 (2010), 169–178 | Zbl

[9] D. I. Tolev, “The ternary Goldbach problem with arithmetic weights attached to two of the variables”, J. Number Theory, 130:2 (2010), 439–457 | MR | Zbl

[10] R. Von, Metod Khardi–Littlvuda, Mir, M., 1985 | MR | Zbl

[11] A. Ghosh, “The distribution of $\alpha p^2$ modulo 1”, Proc. London Math. Soc. (3), 42:2 (1981), 252–269 | DOI | MR | Zbl

[12] J. Brüdern, É. Fouvry, “Lagrange's four squares theorem with almost prime variables”, J. Reine Angew. Math., 454 (1994), 59–96 | MR | Zbl

[13] A. A. Karatsuba, Complex Analysis in Number Theory, CRC Press, Boca Raton, FL, 1995 | MR | Zbl