Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_88_3_a8, author = {A. Kirkoryan and D. I. Tolev}, title = {On a {Version} of the {Hua} {Problem}}, journal = {Matemati\v{c}eskie zametki}, pages = {405--414}, publisher = {mathdoc}, volume = {88}, number = {3}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a8/} }
A. Kirkoryan; D. I. Tolev. On a Version of the Hua Problem. Matematičeskie zametki, Tome 88 (2010) no. 3, pp. 405-414. http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a8/
[1] L.-K. Hua, “Some results in the additive prime number theory”, Quart. J. Math. Oxford Ser., 9 (1938), 68–80 | DOI | Zbl
[2] D. I. Tolev, “Additive problems with prime numbers of special type”, Acta Arith., 96:1 (2000), 53–88 ; “Corrigendum”, Acta Arith., 105:2 (2002), 205 | DOI | MR | Zbl | DOI | MR
[3] Yu. V. Linnik, “Asimptoticheskaya formula v additivnoi probleme Gardi–Littlvuda”, Izv. AN SSSR. Ser. matem., 24:5 (1960), 629–706 | MR | Zbl
[4] C. Hooley, “On the representation of a number as the sum of two squares and a prime”, Acta Math., 97 (1957), 189–210 | DOI | MR | Zbl
[5] Yu. V. Linnik, Dispersionnyi metod v binarnykh additivnykh zadachakh, Izd-vo LGU, Leningrad, 1961 | MR | Zbl
[6] K. Khooli, Primeneniya metodov resheta v teorii chisel, Nauka, M., 1987 | MR | Zbl
[7] K. Matomäki, “The binary Goldbach problem with one prime of the form $p=k^2+l^2+1$”, J. Number Theory, 128:5 (2008), 1195–1210 | DOI | MR | Zbl
[8] D. I. Tolev, “The binary Goldbach problem with arithmetic weights attached to one of the variables”, Acta Arith., 142:2 (2010), 169–178 | Zbl
[9] D. I. Tolev, “The ternary Goldbach problem with arithmetic weights attached to two of the variables”, J. Number Theory, 130:2 (2010), 439–457 | MR | Zbl
[10] R. Von, Metod Khardi–Littlvuda, Mir, M., 1985 | MR | Zbl
[11] A. Ghosh, “The distribution of $\alpha p^2$ modulo 1”, Proc. London Math. Soc. (3), 42:2 (1981), 252–269 | DOI | MR | Zbl
[12] J. Brüdern, É. Fouvry, “Lagrange's four squares theorem with almost prime variables”, J. Reine Angew. Math., 454 (1994), 59–96 | MR | Zbl
[13] A. A. Karatsuba, Complex Analysis in Number Theory, CRC Press, Boca Raton, FL, 1995 | MR | Zbl