On a Version of the Hua Problem
Matematičeskie zametki, Tome 88 (2010) no. 3, pp. 405-414

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that almost all natural numbers $n$ satisfying the congruence $n\equiv3\pmod{24}$, $n\not\equiv0\pmod5$, can be expressed as the sum of three squares of primes, at least one of which can be written as $1+x^2+y^2$.
Keywords: prime number, Hua problem, natural number, multiplicative function, Euler function, Cauchy inequality, Dirichlet $L$-series.
@article{MZM_2010_88_3_a8,
     author = {A. Kirkoryan and D. I. Tolev},
     title = {On a {Version} of the {Hua} {Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {405--414},
     publisher = {mathdoc},
     volume = {88},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a8/}
}
TY  - JOUR
AU  - A. Kirkoryan
AU  - D. I. Tolev
TI  - On a Version of the Hua Problem
JO  - Matematičeskie zametki
PY  - 2010
SP  - 405
EP  - 414
VL  - 88
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a8/
LA  - ru
ID  - MZM_2010_88_3_a8
ER  - 
%0 Journal Article
%A A. Kirkoryan
%A D. I. Tolev
%T On a Version of the Hua Problem
%J Matematičeskie zametki
%D 2010
%P 405-414
%V 88
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a8/
%G ru
%F MZM_2010_88_3_a8
A. Kirkoryan; D. I. Tolev. On a Version of the Hua Problem. Matematičeskie zametki, Tome 88 (2010) no. 3, pp. 405-414. http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a8/