Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_88_3_a7, author = {J. Kaczorowski and A. Perelli}, title = {Linear {Twists} of $L${-Functions} of {Degree~2} from the {Selberg} {Class}}, journal = {Matemati\v{c}eskie zametki}, pages = {399--404}, publisher = {mathdoc}, volume = {88}, number = {3}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a7/} }
J. Kaczorowski; A. Perelli. Linear Twists of $L$-Functions of Degree~2 from the Selberg Class. Matematičeskie zametki, Tome 88 (2010) no. 3, pp. 399-404. http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a7/
[1] S. M. Voronin, “Ob analiticheskom prodolzhenii nekotorykh ryadov Dirikhle”, Teoriya chisel, matematicheskii analiz i ikh prilozheniya, Sbornik statei. Posvyaschaetsya akademiku Ivanu Matveevichu Vinogradovu k ego k ego devyanostoletiyu, Tr. MIAN SSSR, 157, 1981, 25–30 | MR | Zbl
[2] A. Selberg, “Old and new conjectures and results about a class of Dirichlet series”, Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), Univ. Salerno, Salerno, 1992, 367–385 ; Collected Papers, v. II, Springer-Verlag, Berlin, 1991, 47–63 | MR | Zbl | MR | Zbl
[3] J. Kaczorowski, “Axiomatic theory of $L$-functions: the Selberg class”, Analytic Number Theory, Lecture Notes in Math., 1891, Springer-Verlag, Berlin, 2006, 133–209 | MR | Zbl
[4] J. Kaczorowski, A. Perelli, “The Selberg class: a survey”, Number Theory in Progress (Zakopane-Kościelisko, 1997), v. 2, de Gruyter, Berlin, 1999, 953–992 | MR | Zbl
[5] A. Perelli, “A survey of the Selberg class of $L$-functions, Part I”, Milan J. Math., 73 (2005), 19–52 | DOI | MR | Zbl
[6] A. Perelli, “A survey of the Selberg class of $L$-functions, Part II”, Riv. Mat. Univ. Parma (7), 3$^*$ (2004), 83–118 | MR | Zbl
[7] G. M. Bragadin, E. Carletti, A. Perelli, “A note on Hecke's functional equation and the Selberg class”, Funct. Approx. Comment. Math., 41:2 (2009), 211–220 | MR | Zbl
[8] J. Kaczorowski, A. Perelli, “On the structure of the Selberg class, VII: $12$”, Ann. of Math. (2)
[9] J. Kaczorowski, A. Perelli, “On the structure of the Selberg class, V: $15/3$”, Invent. Math., 150:3 (2002), 485–516 | DOI | MR | Zbl