Linear Twists of $L$-Functions of Degree~2 from the Selberg Class
Matematičeskie zametki, Tome 88 (2010) no. 3, pp. 399-404.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1983, S. M. Voronin obtain an analytic continuation to the entire complex plane for some twists of $L$-functions associated with holomorphic modular forms on $\mathrm{SL}(2,Z)$. In this paper, we extend Voronin's result to $L$-functions of degree $2$ from the extended Selberg class.
Keywords: $L$-function, holomorphic modular form, the group $\mathrm{SL}(2,Z)$, meromorphic function, quadratic irrational, Selberg class
Mots-clés : Dirichlet coefficients.
@article{MZM_2010_88_3_a7,
     author = {J. Kaczorowski and A. Perelli},
     title = {Linear {Twists} of $L${-Functions} of {Degree~2} from the {Selberg} {Class}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {399--404},
     publisher = {mathdoc},
     volume = {88},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a7/}
}
TY  - JOUR
AU  - J. Kaczorowski
AU  - A. Perelli
TI  - Linear Twists of $L$-Functions of Degree~2 from the Selberg Class
JO  - Matematičeskie zametki
PY  - 2010
SP  - 399
EP  - 404
VL  - 88
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a7/
LA  - ru
ID  - MZM_2010_88_3_a7
ER  - 
%0 Journal Article
%A J. Kaczorowski
%A A. Perelli
%T Linear Twists of $L$-Functions of Degree~2 from the Selberg Class
%J Matematičeskie zametki
%D 2010
%P 399-404
%V 88
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a7/
%G ru
%F MZM_2010_88_3_a7
J. Kaczorowski; A. Perelli. Linear Twists of $L$-Functions of Degree~2 from the Selberg Class. Matematičeskie zametki, Tome 88 (2010) no. 3, pp. 399-404. http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a7/

[1] S. M. Voronin, “Ob analiticheskom prodolzhenii nekotorykh ryadov Dirikhle”, Teoriya chisel, matematicheskii analiz i ikh prilozheniya, Sbornik statei. Posvyaschaetsya akademiku Ivanu Matveevichu Vinogradovu k ego k ego devyanostoletiyu, Tr. MIAN SSSR, 157, 1981, 25–30 | MR | Zbl

[2] A. Selberg, “Old and new conjectures and results about a class of Dirichlet series”, Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), Univ. Salerno, Salerno, 1992, 367–385 ; Collected Papers, v. II, Springer-Verlag, Berlin, 1991, 47–63 | MR | Zbl | MR | Zbl

[3] J. Kaczorowski, “Axiomatic theory of $L$-functions: the Selberg class”, Analytic Number Theory, Lecture Notes in Math., 1891, Springer-Verlag, Berlin, 2006, 133–209 | MR | Zbl

[4] J. Kaczorowski, A. Perelli, “The Selberg class: a survey”, Number Theory in Progress (Zakopane-Kościelisko, 1997), v. 2, de Gruyter, Berlin, 1999, 953–992 | MR | Zbl

[5] A. Perelli, “A survey of the Selberg class of $L$-functions, Part I”, Milan J. Math., 73 (2005), 19–52 | DOI | MR | Zbl

[6] A. Perelli, “A survey of the Selberg class of $L$-functions, Part II”, Riv. Mat. Univ. Parma (7), 3$^*$ (2004), 83–118 | MR | Zbl

[7] G. M. Bragadin, E. Carletti, A. Perelli, “A note on Hecke's functional equation and the Selberg class”, Funct. Approx. Comment. Math., 41:2 (2009), 211–220 | MR | Zbl

[8] J. Kaczorowski, A. Perelli, “On the structure of the Selberg class, VII: $12$”, Ann. of Math. (2)

[9] J. Kaczorowski, A. Perelli, “On the structure of the Selberg class, V: $15/3$”, Invent. Math., 150:3 (2002), 485–516 | DOI | MR | Zbl