Higher Moments of the Error Term in the Divisor Problem
Matematičeskie zametki, Tome 88 (2010) no. 3, pp. 374-383.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, if $k\ge 2$ is a fixed integer and $1\ll H\le(1/2)X$, then $$ \int_{X-H}^{X+H}\Delta^4_k(x)\,dx \ll_\varepsilon X^\varepsilon (HX^{(2k-2)/k}+H^{(2k-3)/(2k+1)}X^{(8k-8)/(2k+1)}), $$ where $\Delta_k(x)$ is the error term in the general Dirichlet divisor problem. The proof uses a Voronoï–type formula for $\Delta_k(x)$, and the bound of Robert–Sargos for the number of integers when the difference of four $k$th roots is small. The size of the error term in the asymptotic formula for the $m$th moment of $\Delta_2(x)$ is also investigated.
Keywords: Dirichlet divisor problem, higher moments, mean fourth power, residue theorem.
Mots-clés : Voronoï formula, Euler's constant $\gamma$
@article{MZM_2010_88_3_a5,
     author = {A. Ivi\'c and W. Zhai},
     title = {Higher {Moments} of the {Error} {Term} in the {Divisor} {Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {374--383},
     publisher = {mathdoc},
     volume = {88},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a5/}
}
TY  - JOUR
AU  - A. Ivić
AU  - W. Zhai
TI  - Higher Moments of the Error Term in the Divisor Problem
JO  - Matematičeskie zametki
PY  - 2010
SP  - 374
EP  - 383
VL  - 88
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a5/
LA  - ru
ID  - MZM_2010_88_3_a5
ER  - 
%0 Journal Article
%A A. Ivić
%A W. Zhai
%T Higher Moments of the Error Term in the Divisor Problem
%J Matematičeskie zametki
%D 2010
%P 374-383
%V 88
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a5/
%G ru
%F MZM_2010_88_3_a5
A. Ivić; W. Zhai. Higher Moments of the Error Term in the Divisor Problem. Matematičeskie zametki, Tome 88 (2010) no. 3, pp. 374-383. http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a5/

[1] A. Ivić, The Riemann Zeta-Function. Theory and Applications, Dover Publ., Mineola, NY, 2003 | MR | Zbl

[2] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford Univ. Press, Oxford, 1986 | MR | Zbl

[3] A. Ivić, “Large values of the error term in the divisor problem”, Invent. Math., 71:3 (1983), 513–520 | DOI | MR | Zbl

[4] K.-M. Tsang, “Higher power moments of $\Delta(x)$, $E(t)$ and $P(x)$”, Proc. London Math. Soc. (3), 65:1 (1992), 65–84 | DOI | MR | Zbl

[5] A. Ivić, P. Sargos, “On the higher moments of the error term in the divisor problem”, Illinois J. Math., 51:2 (2007), 353–377 | MR | Zbl

[6] W. Zhai, “On higher-power moments of $\Delta(x)$”, Acta Arith., 112:4 (2004), 367–395 ; “On higher-power moments of $\Delta(x)$. II”, Acta Arith., 114:1 (2004), 35–54 ; “On higher-power moments of $\Delta(x)$. III”, Acta Arith., 118:3 (2005), 263–281 ; “On higher-power moments of $\Delta(x)$. IV”, Acta Math. Sinica (Chin. Ser.), 49:3 (2006), 639–646 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl

[7] D. R. Heath-Brown, “The distribution and moments of the error term in the Dirichlet divisor problem”, Acta Arith., 60:4 (1992), 389–415 | MR | Zbl

[8] K. Soundararajan, “Omega results for the divisor and circle problems”, Int. Math. Res. Not., 2003, no. 36, 1987–1998 | DOI | MR | Zbl

[9] K.-C. Tong, “On divisor problems. III”, Acta Math. Sinica, 6 (1956), 515–541 | MR | Zbl

[10] Y.-K. Lau, K.-M. Tsang, “Moments over short intervals”, Arch. Math. (Basel), 84:3 (2005), 249–257 | DOI | MR | Zbl

[11] O. Robert, P. Sargos, “Three-dimensional exponential sums with monomials”, J. Reine Angew. Math., 591 (2006), 1–20 | MR | Zbl

[12] M. N. Huxley, “Exponential sums and lattice points. III”, Proc. London Math. Soc. (3), 87:3 (2003), 591–609 | DOI | MR | Zbl

[13] P. Shiu, “A Brun–Titchmarsh theorem for multiplicative functions”, J. Reine Angew. Math., 313 (1980), 161–170 | MR | Zbl

[14] F. V. Atkinson, “The mean-value of the Riemann zeta function”, Acta Math., 81 (1949), 353–376 | DOI | MR | Zbl

[15] A. Ivić, Lectures on mean values of the Riemann zeta function, Tata Inst. Fund. Res. Lectures on Math. and Phys., 82, Springer-Verlag, Berlin, 1991 | MR | Zbl