Remark on Factorials that are Products of Factorials
Matematičeskie zametki, Tome 88 (2010) no. 3, pp. 350-354
Voir la notice de l'article provenant de la source Math-Net.Ru
In a paper published in 1993, Erdős proved that if $n!=a!b!$, where $1$, then the difference between $n$ and $b$ does not exceed $5\log\log n$ for large enough $n$. In the present paper, we improve this upper bound to $((1+\epsilon)/\log 2)\log\log n$ and generalize it to the equation $a_1!a_2!\dots a_k!=n!$. In a recent paper, F. Luca proved that $n-b=1$ for large enough $n$ provided that the ABC-hypothesis holds.
Keywords:
factorial, product of factorials, Stirling's formula, prime factor.
@article{MZM_2010_88_3_a2,
author = {K. G. Bhat and K. Ramachandra},
title = {Remark on {Factorials} that are {Products} of {Factorials}},
journal = {Matemati\v{c}eskie zametki},
pages = {350--354},
publisher = {mathdoc},
volume = {88},
number = {3},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a2/}
}
K. G. Bhat; K. Ramachandra. Remark on Factorials that are Products of Factorials. Matematičeskie zametki, Tome 88 (2010) no. 3, pp. 350-354. http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a2/