On the Zeros on the Critical Line of $L$-Functions Corresponding to Automorphic Cusp Forms
Matematičeskie zametki, Tome 88 (2010) no. 3, pp. 456-475

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an automorphic cusp form of integer weight $k\ge1$, which is the eigenfunction of all Hecke operators. It is proved that, for the $L$-series whose coefficients correspond to the Fourier coefficients of such an automorphic form, the positive fraction of nontrivial zeros lies on the critical line.
Keywords: automorphic cusp form, Riemann zeta function, Riemann hypothesis, Hecke operator, $L$-function, Jutila's circle method.
@article{MZM_2010_88_3_a13,
     author = {I. S. Rezvyakova},
     title = {On the {Zeros} on the {Critical} {Line} of $L${-Functions} {Corresponding} to {Automorphic} {Cusp} {Forms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {456--475},
     publisher = {mathdoc},
     volume = {88},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a13/}
}
TY  - JOUR
AU  - I. S. Rezvyakova
TI  - On the Zeros on the Critical Line of $L$-Functions Corresponding to Automorphic Cusp Forms
JO  - Matematičeskie zametki
PY  - 2010
SP  - 456
EP  - 475
VL  - 88
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a13/
LA  - ru
ID  - MZM_2010_88_3_a13
ER  - 
%0 Journal Article
%A I. S. Rezvyakova
%T On the Zeros on the Critical Line of $L$-Functions Corresponding to Automorphic Cusp Forms
%J Matematičeskie zametki
%D 2010
%P 456-475
%V 88
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a13/
%G ru
%F MZM_2010_88_3_a13
I. S. Rezvyakova. On the Zeros on the Critical Line of $L$-Functions Corresponding to Automorphic Cusp Forms. Matematičeskie zametki, Tome 88 (2010) no. 3, pp. 456-475. http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a13/