Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_88_3_a12, author = {J. Moser}, title = {Jacob's {Ladders} and the {Almost} {Exact} {Asymptotic} {Representation} of the {Hardy--Littlewood} {Integral}}, journal = {Matemati\v{c}eskie zametki}, pages = {446--455}, publisher = {mathdoc}, volume = {88}, number = {3}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a12/} }
TY - JOUR AU - J. Moser TI - Jacob's Ladders and the Almost Exact Asymptotic Representation of the Hardy--Littlewood Integral JO - Matematičeskie zametki PY - 2010 SP - 446 EP - 455 VL - 88 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a12/ LA - ru ID - MZM_2010_88_3_a12 ER -
J. Moser. Jacob's Ladders and the Almost Exact Asymptotic Representation of the Hardy--Littlewood Integral. Matematičeskie zametki, Tome 88 (2010) no. 3, pp. 446-455. http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a12/
[1] G. H. Hardy, J. E. Littlewood, “Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes”, Acta Math., 41:1 (1916), 119–196 | DOI | MR | Zbl
[2] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford, 1951 | MR | Zbl
[3] F. V. Atkinson, “The mean value of the zeta-function on critical line”, Quart. J. Math. Oxford Ser., 10 (1939), 122–128 | DOI | Zbl
[4] H. Kober, “Eine Mittelwertformel der Riemannschen Zetafunktion”, Compositio Math., 3 (1936), 174–189 | MR | Zbl
[5] E. C. Titchmarsh, “The mean-value of the zeta-function on the critical line”, Proc. London. Math. Soc. (2), 27 (1928), 137–150 | DOI | Zbl
[6] A. Ivić, The Riemann Zeta-Function. The theory of the Riemann zeta-function with applications, Wiley-Intersci. Publ., John Wiley Sons, New York, NY, 1985 | MR | Zbl
[7] A. Good, “Ein $\Omega$-Resultat für das quadratische Mittel der Riemannschen Zetafunktion auf der kritischen Linie”, Invent. Math., 41:3 (1977), 233–251 | DOI | MR | Zbl
[8] R. Balasubramanian, “An improvement on a theorem of Titchmarsh on the mean square of $|\zeta(\frac12+it)|$”, Proc. London Math. Soc. (3), 36:3 (1978), 540–576 | DOI | MR | Zbl
[9] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 2, Teoriya polya, GIFML, M., 1962 | MR | Zbl