Jacob's Ladders and the Almost Exact Asymptotic Representation of the Hardy--Littlewood Integral
Matematičeskie zametki, Tome 88 (2010) no. 3, pp. 446-455.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we introduce a nonlinear integral equation such that the system of global solutions to this equation represents the class of a very narrow beam as $T\to\infty$ (an analog of the laser beam) and this sheaf of solutions leads to an almost-exact representation of the Hardy–Littlewood integral (1918). The accuracy of our result is essentially better than the accuracy of related results of Balasubramanian, Heath–Brown, and Ivic.
Keywords: Hardy–Littlewood integral, Riemann zeta function, Gauss logarithmic integral, nonlinear integral equation, Jacob's ladder, Bonnet's mean-value theorem.
@article{MZM_2010_88_3_a12,
     author = {J. Moser},
     title = {Jacob's {Ladders} and the {Almost} {Exact} {Asymptotic} {Representation} of the {Hardy--Littlewood} {Integral}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {446--455},
     publisher = {mathdoc},
     volume = {88},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a12/}
}
TY  - JOUR
AU  - J. Moser
TI  - Jacob's Ladders and the Almost Exact Asymptotic Representation of the Hardy--Littlewood Integral
JO  - Matematičeskie zametki
PY  - 2010
SP  - 446
EP  - 455
VL  - 88
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a12/
LA  - ru
ID  - MZM_2010_88_3_a12
ER  - 
%0 Journal Article
%A J. Moser
%T Jacob's Ladders and the Almost Exact Asymptotic Representation of the Hardy--Littlewood Integral
%J Matematičeskie zametki
%D 2010
%P 446-455
%V 88
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a12/
%G ru
%F MZM_2010_88_3_a12
J. Moser. Jacob's Ladders and the Almost Exact Asymptotic Representation of the Hardy--Littlewood Integral. Matematičeskie zametki, Tome 88 (2010) no. 3, pp. 446-455. http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a12/

[1] G. H. Hardy, J. E. Littlewood, “Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes”, Acta Math., 41:1 (1916), 119–196 | DOI | MR | Zbl

[2] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford, 1951 | MR | Zbl

[3] F. V. Atkinson, “The mean value of the zeta-function on critical line”, Quart. J. Math. Oxford Ser., 10 (1939), 122–128 | DOI | Zbl

[4] H. Kober, “Eine Mittelwertformel der Riemannschen Zetafunktion”, Compositio Math., 3 (1936), 174–189 | MR | Zbl

[5] E. C. Titchmarsh, “The mean-value of the zeta-function on the critical line”, Proc. London. Math. Soc. (2), 27 (1928), 137–150 | DOI | Zbl

[6] A. Ivić, The Riemann Zeta-Function. The theory of the Riemann zeta-function with applications, Wiley-Intersci. Publ., John Wiley Sons, New York, NY, 1985 | MR | Zbl

[7] A. Good, “Ein $\Omega$-Resultat für das quadratische Mittel der Riemannschen Zetafunktion auf der kritischen Linie”, Invent. Math., 41:3 (1977), 233–251 | DOI | MR | Zbl

[8] R. Balasubramanian, “An improvement on a theorem of Titchmarsh on the mean square of $|\zeta(\frac12+it)|$”, Proc. London Math. Soc. (3), 36:3 (1978), 540–576 | DOI | MR | Zbl

[9] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 2, Teoriya polya, GIFML, M., 1962 | MR | Zbl