On the Vinogradov Additive Problem
Matematičeskie zametki, Tome 88 (2010) no. 3, pp. 325-339.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let us state the main result of the paper. Suppose that the collection $N_1,\dots,N_n$ is admissible. Then, in the representation $$ \begin{cases} p_1+p_2+\dots+p_k=N_1, \\ \dots\dots\dots\dots\dots\dots\dots\dots \\ p_1^n+p_2^n+\dots+p_k^n=N_n, \end{cases} $$ where the unknowns $p_1,p_2,\dots,p_k$ take prime values under the condition $p_s>n+1$, $s=1,\dots,k$, the number $k$ is of the form $$ k=k_0+b(n)s, $$ where $s$ is a nonnegative integer. Further, if $k_0\ge a$, then, in the representation for $k$, we can set $s=0$, but if $k_0\le a-1$, then, for a given $k_0$ there exist admissible collections $(N_1,\dots,N_n)$ that cannot be expressed as $k_0$ summands of the required form, but can be expressed as $k_0+b(n)$ summands.
Keywords: additive problem of Vinogradov, Hilbert–Kamke problem, Vinogradov system of equations, $p$-solvability, Waring–Goldbach problem, Vinogradov system of congruences.
@article{MZM_2010_88_3_a0,
     author = {G. I. Arkhipov and V. N. Chubarikov},
     title = {On the {Vinogradov} {Additive} {Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {325--339},
     publisher = {mathdoc},
     volume = {88},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a0/}
}
TY  - JOUR
AU  - G. I. Arkhipov
AU  - V. N. Chubarikov
TI  - On the Vinogradov Additive Problem
JO  - Matematičeskie zametki
PY  - 2010
SP  - 325
EP  - 339
VL  - 88
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a0/
LA  - ru
ID  - MZM_2010_88_3_a0
ER  - 
%0 Journal Article
%A G. I. Arkhipov
%A V. N. Chubarikov
%T On the Vinogradov Additive Problem
%J Matematičeskie zametki
%D 2010
%P 325-339
%V 88
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a0/
%G ru
%F MZM_2010_88_3_a0
G. I. Arkhipov; V. N. Chubarikov. On the Vinogradov Additive Problem. Matematičeskie zametki, Tome 88 (2010) no. 3, pp. 325-339. http://geodesic.mathdoc.fr/item/MZM_2010_88_3_a0/

[1] V. N. Chubarikov, Mnogomernye problemy teorii prostykh chisel, Dis. $\dots$ dokt. fiz.-matem. nauk, Novosibirsk, 1989

[2] G. I. Arkhipov, V. N. Chubarikov, “Ob arifmeticheskikh usloviyakh razreshimosti nelineinykh sistem diofantovykh uravnenii”, Dokl. AN SSSR, 284:1 (1985), 16–21 | MR | Zbl

[3] V. N. Chubarikov, “Ob odnovremennom predstavlenii naturalnykh chisel summami stepenei prostykh chisel”, Dokl. AN SSSR, 286:4 (1986), 828–831 | MR | Zbl

[4] G. I. Arkhipov, V. N. Chubarikov, “O chisle slagaemykh v probleme Gilberta–Kamke v prostykh chislakh”, Dokl. RAN, 330:4 (1993), 407–408 | MR | Zbl

[5] G. I. Arkhipov, V. N. Chubarikov, “Ob asimptotike chisla slagaemykh v mnogomernoi odditivnoi zadache s prostymi chislami”, Dokl. RAN, 331:1 (1993), 5–6 | MR | Zbl

[6] G. I. Arkhipov, V. N. Chubarikov, “O chisle slagaemykh v probleme Vinogradova i ee obobscheniyakh”, IV Mezhdunarodnaya konferentsiya “Sovremennye problemy teorii chisel i prilozheniya”, posvyaschennaya 180-letiyu P. L. Chebyshëva i 110-letiyu I. M. Vinogradova (Tula, 10–15 sentyabrya, 2001), Aktualnye problemy. Ch. 1, Izd-vo mekh.-mat. fak-ta MGU, M., 2002, 5–38 | MR | Zbl

[7] E. A. Burlakova, “O probleme Varinga v prostykh chislakh”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2008, no. 5, 61–62

[8] V. N. Chubarikov, “K probleme Varinga–Goldbakha”, Dokl. RAN, 427:1 (2009), 24–27 | MR | Zbl

[9] I. M. Vinogradov, Metod trigonometricheskikh summ v teorii chisel, Tr. MIAN SSSR, 23, Izd-vo AN SSSR, M.–L., 1947 | MR | Zbl

[10] P. Erdős, “On the easier Waring problem for powers of primes. I”, Proc. Cambridge Philos. Soc., 33 (1937), 6–12 | DOI | Zbl

[11] L.-K. Hua, “On the representation of numbers as the sums of the powers of primes”, Math. Z., 44:1 (1938), 335–346 | MR | Zbl

[12] I. M. Vinogradov, “Nekotorye obschie teoremy, otnosyaschiesya k teorii prostykh chisel”, Tr. Tbilissk. matem. in-ta, 3, 1938, 1–33

[13] L.-K. Hua, Additive Primzahltheorie, B. G. Teubner Verlagsgesellschaft, Leipzig, 1959 | MR | Zbl

[14] K. K. Mardzhanishvili, “Ob odnoi zadache additivnoi teorii chisel”, Izv. AN SSSR. Ser. matem., 4:2 (1940), 193–214 | MR | Zbl

[15] G. I. Arkhipov, “O znachenii osobogo ryada v probleme Gilberta–Kamke”, Dokl. AN SSSR, 259:2 (1981), 265–267 | MR | Zbl

[16] G. I. Arkhipov, “O probleme Gilberta–Kamke”, Izv. AN SSSR. Ser. matem., 48:1 (1984), 3–52 | MR | Zbl

[17] Khua Lo-Ken, Additivnaya teoriya prostykh chisel, Tr. Matem. in-ta im. V. A. Steklova, 22, Izd-vo AN SSSR, M.–L., 1947 | MR | Zbl

[18] G. I. Arkhipov, A. A. Karatsuba, V. N. Chubarikov, Teoriya kratnykh trigonometricheskikh summ, Nauka, M., 1987 | MR | Zbl