Axiomatization of Modal Logic Squares with Distinguished Diagonal
Matematičeskie zametki, Tome 88 (2010) no. 2, pp. 261-274

Voir la notice de l'article provenant de la source Math-Net.Ru

Modal logics of squared Kripke frames with distinguished diagonal are considered. It is shown that many such logics, unlike ordinary two-dimensional products, cannot be axiomatized by formulas with finitely many variables. The method resembles that used to obtain a similar result for $\ge3$-dimensional products of modal logics. The proof uses, in particular, generalized Sahlquist formulas.
Keywords: $\delta$-square of a Kripke frame, $\delta$-square of a modal logic, $\delta$-logic of a class of frames, axiomatizability, Kripke frame, Kripke model, variety of a modal logic, modal logic.
@article{MZM_2010_88_2_a8,
     author = {S. P. Kikot'},
     title = {Axiomatization of {Modal} {Logic} {Squares} with {Distinguished} {Diagonal}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {261--274},
     publisher = {mathdoc},
     volume = {88},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a8/}
}
TY  - JOUR
AU  - S. P. Kikot'
TI  - Axiomatization of Modal Logic Squares with Distinguished Diagonal
JO  - Matematičeskie zametki
PY  - 2010
SP  - 261
EP  - 274
VL  - 88
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a8/
LA  - ru
ID  - MZM_2010_88_2_a8
ER  - 
%0 Journal Article
%A S. P. Kikot'
%T Axiomatization of Modal Logic Squares with Distinguished Diagonal
%J Matematičeskie zametki
%D 2010
%P 261-274
%V 88
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a8/
%G ru
%F MZM_2010_88_2_a8
S. P. Kikot'. Axiomatization of Modal Logic Squares with Distinguished Diagonal. Matematičeskie zametki, Tome 88 (2010) no. 2, pp. 261-274. http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a8/