Axiomatization of Modal Logic Squares with Distinguished Diagonal
Matematičeskie zametki, Tome 88 (2010) no. 2, pp. 261-274.

Voir la notice de l'article provenant de la source Math-Net.Ru

Modal logics of squared Kripke frames with distinguished diagonal are considered. It is shown that many such logics, unlike ordinary two-dimensional products, cannot be axiomatized by formulas with finitely many variables. The method resembles that used to obtain a similar result for $\ge3$-dimensional products of modal logics. The proof uses, in particular, generalized Sahlquist formulas.
Keywords: $\delta$-square of a Kripke frame, $\delta$-square of a modal logic, $\delta$-logic of a class of frames, axiomatizability, Kripke frame, Kripke model, variety of a modal logic, modal logic.
@article{MZM_2010_88_2_a8,
     author = {S. P. Kikot'},
     title = {Axiomatization of {Modal} {Logic} {Squares} with {Distinguished} {Diagonal}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {261--274},
     publisher = {mathdoc},
     volume = {88},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a8/}
}
TY  - JOUR
AU  - S. P. Kikot'
TI  - Axiomatization of Modal Logic Squares with Distinguished Diagonal
JO  - Matematičeskie zametki
PY  - 2010
SP  - 261
EP  - 274
VL  - 88
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a8/
LA  - ru
ID  - MZM_2010_88_2_a8
ER  - 
%0 Journal Article
%A S. P. Kikot'
%T Axiomatization of Modal Logic Squares with Distinguished Diagonal
%J Matematičeskie zametki
%D 2010
%P 261-274
%V 88
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a8/
%G ru
%F MZM_2010_88_2_a8
S. P. Kikot'. Axiomatization of Modal Logic Squares with Distinguished Diagonal. Matematičeskie zametki, Tome 88 (2010) no. 2, pp. 261-274. http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a8/

[1] D. M. Gabbay, A. Kurucz, F. Wolter, M. Zakharyaschev, Many-Dimensional Modal Logics: Theory and Applications, Stud. Logic Found. Math., 148, North-Holland Publ., Amsterdam, 2003 | MR | Zbl

[2] V. B. Shekhtman, “Dvumernye modalnye logiki”, Matem. zametki, 23:5 (1978), 759–772 | MR | Zbl

[3] R. Hirsch, I. Hodkinson, Relational Algebras by Games, Stud. Logic Found. Math., 147, North-Holland Publ., Amsterdam, 2002 | MR

[4] M. Marx, Y. Venema, Multi-Dimensional Modal Logic, Appl. Log. Ser., 4, Kluwer Acad. Publ., Dordrecht, 1997 | MR | Zbl

[5] Y. Venema, “Cylindric modal logic”, J. Symbolic Logic, 60:2 (1995), 591–623 | DOI | MR | Zbl

[6] L. Henkin, J. D. Monk, A. Tarski, Cylindric Algebras, Part I, Stud. Logic Found. Math., 64, North-Holland Publ., Amsterdam, 1971 | MR | Zbl

[7] I. Venema, Many-Dimensional Modal Logic, PhD Thesis, Amsterdam, 1991

[8] A. Kurucz, “On axiomatising products of Kripke frames, part II”, Advances in Modal Logic, 7, College Publ., 2008, 219–230 http://www.aiml.net/volumes/volume7/Kurucz.pdf

[9] P. Blackburn, M. de Rijke, Y. Venema, Modal Logic, Cambridge Tracts Theoret. Comput. Sci., 53, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl

[10] A. Kurucz, “Products of modal logics with diagonal constant lacking the finite model property”, Frontiers of Combining Systems, Lecture Notes in Comput. Sci., 5749, Springer-Verlag, Berlin, 2009, 279–286 | DOI

[11] K. Segerberg, “Two-dimensional modal logic”, J. Philos. Logic, 2:1 (1973), 77–96 | DOI | MR | Zbl