Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_88_2_a8, author = {S. P. Kikot'}, title = {Axiomatization of {Modal} {Logic} {Squares} with {Distinguished} {Diagonal}}, journal = {Matemati\v{c}eskie zametki}, pages = {261--274}, publisher = {mathdoc}, volume = {88}, number = {2}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a8/} }
S. P. Kikot'. Axiomatization of Modal Logic Squares with Distinguished Diagonal. Matematičeskie zametki, Tome 88 (2010) no. 2, pp. 261-274. http://geodesic.mathdoc.fr/item/MZM_2010_88_2_a8/
[1] D. M. Gabbay, A. Kurucz, F. Wolter, M. Zakharyaschev, Many-Dimensional Modal Logics: Theory and Applications, Stud. Logic Found. Math., 148, North-Holland Publ., Amsterdam, 2003 | MR | Zbl
[2] V. B. Shekhtman, “Dvumernye modalnye logiki”, Matem. zametki, 23:5 (1978), 759–772 | MR | Zbl
[3] R. Hirsch, I. Hodkinson, Relational Algebras by Games, Stud. Logic Found. Math., 147, North-Holland Publ., Amsterdam, 2002 | MR
[4] M. Marx, Y. Venema, Multi-Dimensional Modal Logic, Appl. Log. Ser., 4, Kluwer Acad. Publ., Dordrecht, 1997 | MR | Zbl
[5] Y. Venema, “Cylindric modal logic”, J. Symbolic Logic, 60:2 (1995), 591–623 | DOI | MR | Zbl
[6] L. Henkin, J. D. Monk, A. Tarski, Cylindric Algebras, Part I, Stud. Logic Found. Math., 64, North-Holland Publ., Amsterdam, 1971 | MR | Zbl
[7] I. Venema, Many-Dimensional Modal Logic, PhD Thesis, Amsterdam, 1991
[8] A. Kurucz, “On axiomatising products of Kripke frames, part II”, Advances in Modal Logic, 7, College Publ., 2008, 219–230 http://www.aiml.net/volumes/volume7/Kurucz.pdf
[9] P. Blackburn, M. de Rijke, Y. Venema, Modal Logic, Cambridge Tracts Theoret. Comput. Sci., 53, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl
[10] A. Kurucz, “Products of modal logics with diagonal constant lacking the finite model property”, Frontiers of Combining Systems, Lecture Notes in Comput. Sci., 5749, Springer-Verlag, Berlin, 2009, 279–286 | DOI
[11] K. Segerberg, “Two-dimensional modal logic”, J. Philos. Logic, 2:1 (1973), 77–96 | DOI | MR | Zbl