On the Existence of a Point Subset with Three or Five Interior Points
Matematičeskie zametki, Tome 88 (2010) no. 1, pp. 105-115
Voir la notice de l'article provenant de la source Math-Net.Ru
An interior point of a finite planar point set is a point of the set that is not on the boundary of the convex hull of the set. For any integer $k\ge1$, let $h(k)$ be the smallest integer such that every point set in the plane, no three collinear, with at least $h(k)$ interior points, has a subset with $k$ or $k+2$ interior points of $P$. We prove that $h(3)=8$.
Keywords:
finite planar point set, interior point.
@article{MZM_2010_88_1_a8,
author = {Xianglin Wei and Wenhua Lan and Ren Ding},
title = {On the {Existence} of a {Point} {Subset} with {Three} or {Five} {Interior} {Points}},
journal = {Matemati\v{c}eskie zametki},
pages = {105--115},
publisher = {mathdoc},
volume = {88},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a8/}
}
TY - JOUR AU - Xianglin Wei AU - Wenhua Lan AU - Ren Ding TI - On the Existence of a Point Subset with Three or Five Interior Points JO - Matematičeskie zametki PY - 2010 SP - 105 EP - 115 VL - 88 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a8/ LA - ru ID - MZM_2010_88_1_a8 ER -
Xianglin Wei; Wenhua Lan; Ren Ding. On the Existence of a Point Subset with Three or Five Interior Points. Matematičeskie zametki, Tome 88 (2010) no. 1, pp. 105-115. http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a8/