On the Existence of a Point Subset with Three or Five Interior Points
Matematičeskie zametki, Tome 88 (2010) no. 1, pp. 105-115

Voir la notice de l'article provenant de la source Math-Net.Ru

An interior point of a finite planar point set is a point of the set that is not on the boundary of the convex hull of the set. For any integer $k\ge1$, let $h(k)$ be the smallest integer such that every point set in the plane, no three collinear, with at least $h(k)$ interior points, has a subset with $k$ or $k+2$ interior points of $P$. We prove that $h(3)=8$.
Keywords: finite planar point set, interior point.
@article{MZM_2010_88_1_a8,
     author = {Xianglin Wei and Wenhua Lan and Ren Ding},
     title = {On the {Existence} of a {Point} {Subset} with {Three} or {Five} {Interior} {Points}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {105--115},
     publisher = {mathdoc},
     volume = {88},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a8/}
}
TY  - JOUR
AU  - Xianglin Wei
AU  - Wenhua Lan
AU  - Ren Ding
TI  - On the Existence of a Point Subset with Three or Five Interior Points
JO  - Matematičeskie zametki
PY  - 2010
SP  - 105
EP  - 115
VL  - 88
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a8/
LA  - ru
ID  - MZM_2010_88_1_a8
ER  - 
%0 Journal Article
%A Xianglin Wei
%A Wenhua Lan
%A Ren Ding
%T On the Existence of a Point Subset with Three or Five Interior Points
%J Matematičeskie zametki
%D 2010
%P 105-115
%V 88
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a8/
%G ru
%F MZM_2010_88_1_a8
Xianglin Wei; Wenhua Lan; Ren Ding. On the Existence of a Point Subset with Three or Five Interior Points. Matematičeskie zametki, Tome 88 (2010) no. 1, pp. 105-115. http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a8/