On the Existence of a Point Subset with Three or Five Interior Points
Matematičeskie zametki, Tome 88 (2010) no. 1, pp. 105-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

An interior point of a finite planar point set is a point of the set that is not on the boundary of the convex hull of the set. For any integer $k\ge1$, let $h(k)$ be the smallest integer such that every point set in the plane, no three collinear, with at least $h(k)$ interior points, has a subset with $k$ or $k+2$ interior points of $P$. We prove that $h(3)=8$.
Keywords: finite planar point set, interior point.
@article{MZM_2010_88_1_a8,
     author = {Xianglin Wei and Wenhua Lan and Ren Ding},
     title = {On the {Existence} of a {Point} {Subset} with {Three} or {Five} {Interior} {Points}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {105--115},
     publisher = {mathdoc},
     volume = {88},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a8/}
}
TY  - JOUR
AU  - Xianglin Wei
AU  - Wenhua Lan
AU  - Ren Ding
TI  - On the Existence of a Point Subset with Three or Five Interior Points
JO  - Matematičeskie zametki
PY  - 2010
SP  - 105
EP  - 115
VL  - 88
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a8/
LA  - ru
ID  - MZM_2010_88_1_a8
ER  - 
%0 Journal Article
%A Xianglin Wei
%A Wenhua Lan
%A Ren Ding
%T On the Existence of a Point Subset with Three or Five Interior Points
%J Matematičeskie zametki
%D 2010
%P 105-115
%V 88
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a8/
%G ru
%F MZM_2010_88_1_a8
Xianglin Wei; Wenhua Lan; Ren Ding. On the Existence of a Point Subset with Three or Five Interior Points. Matematičeskie zametki, Tome 88 (2010) no. 1, pp. 105-115. http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a8/

[1] P. Erdös, G. Szekeres, “A combinatorial problem in geometry”, Compositio Math., 2 (1935), 463–470 | MR | Zbl

[2] J. Horton, “Sets with no empty 7-gons”, Canad. Math. Bull., 26:4 (1983), 482–484 | MR | Zbl

[3] D. Avis, K. Hosono, M. Urabe, “On the existence of a point subset with a specified number of interior points”, Discrete Math., 241:1–3 (2001), 33–40 | DOI | MR | Zbl

[4] T. Fevens, “A note on point subsets with a specified number of interior points”, Discrete and Computational Geometry, Lecture Notes in Comput. Sci., 2866, Springer-Verlag, Berlin, 2003, 152–158 | DOI | MR | Zbl

[5] Khianglin Vei, Ren Ding, “O ploskikh tochechnykh podmnozhestvakh s zadannym chislom vnutrennikh tochek”, Matem. zametki, 83:5 (2008), 752–756 | MR | Zbl

[6] T. Bisztriczky, K. Hosono, G. Károlyi, M. Urabe, “Constructions from empty polygons”, Period. Math. Hungar., 49:2 (2004), 1–8 | DOI | MR | Zbl

[7] K. Hosono, “On the existence of a convex point subset containing one triangle in the plane”, Discrete Math., 305:1–3 (2005), 201–218 | DOI | MR | Zbl

[8] D. Avis, K. Hosono, M. Urabe, “On the existence of a point subset with 4 or 5 interior points”, Discrete and Computational Geometry (Tokyo, 1998), Lecture Notes in Comput. Sci., 1763, Springer-Verlag, Berlin, 2000, 57–64 | MR | Zbl