Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_88_1_a8, author = {Xianglin Wei and Wenhua Lan and Ren Ding}, title = {On the {Existence} of a {Point} {Subset} with {Three} or {Five} {Interior} {Points}}, journal = {Matemati\v{c}eskie zametki}, pages = {105--115}, publisher = {mathdoc}, volume = {88}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a8/} }
TY - JOUR AU - Xianglin Wei AU - Wenhua Lan AU - Ren Ding TI - On the Existence of a Point Subset with Three or Five Interior Points JO - Matematičeskie zametki PY - 2010 SP - 105 EP - 115 VL - 88 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a8/ LA - ru ID - MZM_2010_88_1_a8 ER -
Xianglin Wei; Wenhua Lan; Ren Ding. On the Existence of a Point Subset with Three or Five Interior Points. Matematičeskie zametki, Tome 88 (2010) no. 1, pp. 105-115. http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a8/
[1] P. Erdös, G. Szekeres, “A combinatorial problem in geometry”, Compositio Math., 2 (1935), 463–470 | MR | Zbl
[2] J. Horton, “Sets with no empty 7-gons”, Canad. Math. Bull., 26:4 (1983), 482–484 | MR | Zbl
[3] D. Avis, K. Hosono, M. Urabe, “On the existence of a point subset with a specified number of interior points”, Discrete Math., 241:1–3 (2001), 33–40 | DOI | MR | Zbl
[4] T. Fevens, “A note on point subsets with a specified number of interior points”, Discrete and Computational Geometry, Lecture Notes in Comput. Sci., 2866, Springer-Verlag, Berlin, 2003, 152–158 | DOI | MR | Zbl
[5] Khianglin Vei, Ren Ding, “O ploskikh tochechnykh podmnozhestvakh s zadannym chislom vnutrennikh tochek”, Matem. zametki, 83:5 (2008), 752–756 | MR | Zbl
[6] T. Bisztriczky, K. Hosono, G. Károlyi, M. Urabe, “Constructions from empty polygons”, Period. Math. Hungar., 49:2 (2004), 1–8 | DOI | MR | Zbl
[7] K. Hosono, “On the existence of a convex point subset containing one triangle in the plane”, Discrete Math., 305:1–3 (2005), 201–218 | DOI | MR | Zbl
[8] D. Avis, K. Hosono, M. Urabe, “On the existence of a point subset with 4 or 5 interior points”, Discrete and Computational Geometry (Tokyo, 1998), Lecture Notes in Comput. Sci., 1763, Springer-Verlag, Berlin, 2000, 57–64 | MR | Zbl