On the Heesch Number for the Hyperbolic Plane
Matematičeskie zametki, Tome 88 (2010) no. 1, pp. 97-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that there exists a polygon with arbitrary Heesch number on the hyperbolic plane.
Keywords: hyperbolic plane, Heesch number, tiling, corona of a tiling, Schläfli symbol.
Mots-clés : polygon
@article{MZM_2010_88_1_a7,
     author = {A. S. Tarasov},
     title = {On the {Heesch} {Number} for the {Hyperbolic} {Plane}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {97--104},
     publisher = {mathdoc},
     volume = {88},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a7/}
}
TY  - JOUR
AU  - A. S. Tarasov
TI  - On the Heesch Number for the Hyperbolic Plane
JO  - Matematičeskie zametki
PY  - 2010
SP  - 97
EP  - 104
VL  - 88
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a7/
LA  - ru
ID  - MZM_2010_88_1_a7
ER  - 
%0 Journal Article
%A A. S. Tarasov
%T On the Heesch Number for the Hyperbolic Plane
%J Matematičeskie zametki
%D 2010
%P 97-104
%V 88
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a7/
%G ru
%F MZM_2010_88_1_a7
A. S. Tarasov. On the Heesch Number for the Hyperbolic Plane. Matematičeskie zametki, Tome 88 (2010) no. 1, pp. 97-104. http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a7/

[1] C. Mann, “Hyperbolic regular polygons with notched edges”, Discrete Comput. Geom., 34:1 (2005), 143–166 | MR | Zbl

[2] C. Mann, On Heesch's Problem and Other Tiling Problems, Ph. D. Thesis, Univ. of Arkansas, Fayetteville, AR, 2001

[3] D. Eppstein, Heesch's problem http://www.ics.uci.edu/\texttildelow eppstein/junkyard/heesch/

[4] A. D. Aleksandrov, “O zapolnenii prostranstva mnogogrannikami”, Vestn. Leningradsk. un-ta, 1954, no. 2, 33–43 | MR