On the Heesch Number for the Hyperbolic Plane
Matematičeskie zametki, Tome 88 (2010) no. 1, pp. 97-104
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove that there exists a polygon with arbitrary Heesch number on the hyperbolic plane.
Keywords:
hyperbolic plane, Heesch number, tiling, corona of a tiling
Mots-clés : polygon, Schläfli symbol.
Mots-clés : polygon, Schläfli symbol.
@article{MZM_2010_88_1_a7,
author = {A. S. Tarasov},
title = {On the {Heesch} {Number} for the {Hyperbolic} {Plane}},
journal = {Matemati\v{c}eskie zametki},
pages = {97--104},
year = {2010},
volume = {88},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a7/}
}
A. S. Tarasov. On the Heesch Number for the Hyperbolic Plane. Matematičeskie zametki, Tome 88 (2010) no. 1, pp. 97-104. http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a7/
[1] C. Mann, “Hyperbolic regular polygons with notched edges”, Discrete Comput. Geom., 34:1 (2005), 143–166 | MR | Zbl
[2] C. Mann, On Heesch's Problem and Other Tiling Problems, Ph. D. Thesis, Univ. of Arkansas, Fayetteville, AR, 2001
[3] D. Eppstein, Heesch's problem http://www.ics.uci.edu/\texttildelow eppstein/junkyard/heesch/
[4] A. D. Aleksandrov, “O zapolnenii prostranstva mnogogrannikami”, Vestn. Leningradsk. un-ta, 1954, no. 2, 33–43 | MR