Lie Algebras and Algebras of Associative Type
Matematičeskie zametki, Tome 88 (2010) no. 1, pp. 43-52
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper, some properties of algebras of associative type are studied, and these properties are then used to describe the structure of finite-dimensional semisimple modular Lie algebras. It is proved that the homogeneous radical of any finite-dimensional algebra of associative type coincides with the kernel of some form induced by the trace function with values in a polynomial ring. This fact is used to show that every finite-dimensional semisimple algebra of associative type $A=\bigoplus_{\alpha\in G}A_\alpha$ graded by some group $G$, over a field of characteristic zero, has a nonzero component $A_1$ (where 1 stands for the identity element of $G$), and $A_1$ is a semisimple associative algebra. Let $B=\bigoplus_{\alpha\in G}B_\alpha$ be a finite-dimensional semisimple Lie algebra over a prime field $F_p$, and let $B$ be graded by a commutative group $G$. If $B=F_p\otimes_{\mathbb Z}A_L$, where $A_L$ is the commutator algebra of a $\mathbb Z$-algebra $A=\bigoplus_{\alpha\in G}A_\alpha$; if $\mathbb Q\otimes_{\mathbb Z}A$ is an algebra of associative type, then the 1-component of the algebra $K\otimes_{\mathbb Z}B$, where $K$ stands for the algebraic closure of the field $F_p$, is the sum of some algebras of the form $\operatorname{gl}(n_i,K)$.
Keywords:
algebra of associative type, graded algebra, finite-dimensional semisimple Lie algebra, finite-dimensional semisimple algebra of associative type.
@article{MZM_2010_88_1_a3,
author = {N. A. Koreshkov},
title = {Lie {Algebras} and {Algebras} of {Associative} {Type}},
journal = {Matemati\v{c}eskie zametki},
pages = {43--52},
year = {2010},
volume = {88},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a3/}
}
N. A. Koreshkov. Lie Algebras and Algebras of Associative Type. Matematičeskie zametki, Tome 88 (2010) no. 1, pp. 43-52. http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a3/
[1] N. A. Koreshkov, “O nilpotentnosti i razlozhenii algebr assotsiativnogo tipa”, Izv. vuzov. Matem., 2006, no. 9, 34–42 | MR
[2] Y. A. Bahturin, M. V. Zaicev, “Identities of graded algebras”, J. Algebra, 205:1 (1998), 1–12 | DOI | MR | Zbl
[3] Yu. A. Bakhturin, M. V. Zaitsev, S. K. Segal, “$G$-tozhdestva neassotsiativnykh algebr”, Matem. sb., 190:11 (1999), 3–14 | MR | Zbl
[4] M. V. Zaitsev, S. K. Segal, “Konechnye graduirovki prostykh artinovykh kolets”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2001, no. 3, 21–24 | MR | Zbl