Determination of Periods of Geometric Continued Fractions for Two-Dimensional Algebraic Hyperbolic Operators
Matematičeskie zametki, Tome 88 (2010) no. 1, pp. 30-42

Voir la notice de l'article provenant de la source Math-Net.Ru

An explicit construction of a reduced hyperbolic integer operator from the group $SL(2,\mathbb Z)$ such that one of the periods of the corresponding geometric continued fraction in the sense of Klein coincides with a given sequence of positive integers is presented. An algorithm determining periods for any operator in $SL(2,\mathbb Z)$ (which is based on Gauss' reduction theory) is experimentally studied.
Keywords: geometric continued fraction in the sense of Klein, period of a geometric continued fraction, hyperbolic integer operator, sail of an integer operator, LLS-sequence, integer length, integer sine.
@article{MZM_2010_88_1_a2,
     author = {O. N. Karpenkov},
     title = {Determination of {Periods} of {Geometric} {Continued} {Fractions} for {Two-Dimensional} {Algebraic} {Hyperbolic} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {30--42},
     publisher = {mathdoc},
     volume = {88},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a2/}
}
TY  - JOUR
AU  - O. N. Karpenkov
TI  - Determination of Periods of Geometric Continued Fractions for Two-Dimensional Algebraic Hyperbolic Operators
JO  - Matematičeskie zametki
PY  - 2010
SP  - 30
EP  - 42
VL  - 88
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a2/
LA  - ru
ID  - MZM_2010_88_1_a2
ER  - 
%0 Journal Article
%A O. N. Karpenkov
%T Determination of Periods of Geometric Continued Fractions for Two-Dimensional Algebraic Hyperbolic Operators
%J Matematičeskie zametki
%D 2010
%P 30-42
%V 88
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a2/
%G ru
%F MZM_2010_88_1_a2
O. N. Karpenkov. Determination of Periods of Geometric Continued Fractions for Two-Dimensional Algebraic Hyperbolic Operators. Matematičeskie zametki, Tome 88 (2010) no. 1, pp. 30-42. http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a2/