Determination of Periods of Geometric Continued Fractions for Two-Dimensional Algebraic Hyperbolic Operators
Matematičeskie zametki, Tome 88 (2010) no. 1, pp. 30-42
Voir la notice de l'article provenant de la source Math-Net.Ru
An explicit construction of a reduced hyperbolic integer operator from the group $SL(2,\mathbb Z)$ such that one of the periods of the corresponding geometric continued fraction in the sense of Klein coincides with a given sequence of positive integers is presented. An algorithm determining periods for any operator in $SL(2,\mathbb Z)$ (which is based on Gauss' reduction theory) is experimentally studied.
Keywords:
geometric continued fraction in the sense of Klein, period of a geometric continued fraction, hyperbolic integer operator, sail of an integer operator, LLS-sequence, integer length, integer sine.
@article{MZM_2010_88_1_a2,
author = {O. N. Karpenkov},
title = {Determination of {Periods} of {Geometric} {Continued} {Fractions} for {Two-Dimensional} {Algebraic} {Hyperbolic} {Operators}},
journal = {Matemati\v{c}eskie zametki},
pages = {30--42},
publisher = {mathdoc},
volume = {88},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a2/}
}
TY - JOUR AU - O. N. Karpenkov TI - Determination of Periods of Geometric Continued Fractions for Two-Dimensional Algebraic Hyperbolic Operators JO - Matematičeskie zametki PY - 2010 SP - 30 EP - 42 VL - 88 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a2/ LA - ru ID - MZM_2010_88_1_a2 ER -
O. N. Karpenkov. Determination of Periods of Geometric Continued Fractions for Two-Dimensional Algebraic Hyperbolic Operators. Matematičeskie zametki, Tome 88 (2010) no. 1, pp. 30-42. http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a2/