Determination of Periods of Geometric Continued Fractions for Two-Dimensional Algebraic Hyperbolic Operators
Matematičeskie zametki, Tome 88 (2010) no. 1, pp. 30-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

An explicit construction of a reduced hyperbolic integer operator from the group $SL(2,\mathbb Z)$ such that one of the periods of the corresponding geometric continued fraction in the sense of Klein coincides with a given sequence of positive integers is presented. An algorithm determining periods for any operator in $SL(2,\mathbb Z)$ (which is based on Gauss' reduction theory) is experimentally studied.
Keywords: geometric continued fraction in the sense of Klein, period of a geometric continued fraction, hyperbolic integer operator, sail of an integer operator, LLS-sequence, integer length, integer sine.
@article{MZM_2010_88_1_a2,
     author = {O. N. Karpenkov},
     title = {Determination of {Periods} of {Geometric} {Continued} {Fractions} for {Two-Dimensional} {Algebraic} {Hyperbolic} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {30--42},
     publisher = {mathdoc},
     volume = {88},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a2/}
}
TY  - JOUR
AU  - O. N. Karpenkov
TI  - Determination of Periods of Geometric Continued Fractions for Two-Dimensional Algebraic Hyperbolic Operators
JO  - Matematičeskie zametki
PY  - 2010
SP  - 30
EP  - 42
VL  - 88
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a2/
LA  - ru
ID  - MZM_2010_88_1_a2
ER  - 
%0 Journal Article
%A O. N. Karpenkov
%T Determination of Periods of Geometric Continued Fractions for Two-Dimensional Algebraic Hyperbolic Operators
%J Matematičeskie zametki
%D 2010
%P 30-42
%V 88
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a2/
%G ru
%F MZM_2010_88_1_a2
O. N. Karpenkov. Determination of Periods of Geometric Continued Fractions for Two-Dimensional Algebraic Hyperbolic Operators. Matematičeskie zametki, Tome 88 (2010) no. 1, pp. 30-42. http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a2/

[1] J. Lewis, D. Zagier, “Period functions and the Selberg zeta function for the modular group”, The Mathematical Beauty of Physics, Adv. Ser. Math. Phys., 24, World Sci., Singapore, 1997, 83–97 | MR | Zbl

[2] V. I. Arnold, Zadachi Arnolda, Fazis, M., 2000 | MR | Zbl

[3] V. I. Arnold, Tsepnye drobi, MTsNMO, M., 2002

[4] M. Pavlovskaya, Continued Fraction Expansions of Matrix Eigenvectors, preprint, 2007

[5] M. O. Avdeeva, V. A. Bykovskii, Reshenie zadachi Arnolda o statistikakh Gaussa–Kuzmina, Preprint DVO RAN no. 08, Dalnauka, Vladivostok, 2002

[6] M. O. Avdeeva, “O statistikakh nepolnykh chastnykh konechnykh tsepnykh drobei”, Funkts. analiz i ego pril., 38:2 (2004), 1–11 | MR | Zbl

[7] V. I. Arnold, “Arifmetika sovershennykh kvadratichnykh form, simmetriya ikh nepreryvnykh drobei i geometriya ikh mira de Sittera”, Materialy letnei shkoly “Sovremennaya Matematika” (16–28 iyulya 2002 g., Dubna), Obschie lektsii http://www.mccme.ru/dubna/2002/material.htm

[8] S. Katok, Continued fractions, Hyperbolic Geometry and Quadratic Forms Course Notes for MATH 497A REU Program, Summer 2001 http://www.math.psu.edu/katok_s/pub/reu-book.ps

[9] D. R. Hickerson, “Length of period of simple continued fraction expansion of $\sqrt d$”, Pacific J. Math., 46:2 (1973), 429–432 | MR | Zbl

[10] F. Klein, “Ueber eine geometrische Auffassung der gewöhnlichen Kettenbruchentwickelung”, Gott. Nachr., 3 (1895), 357–359 | Zbl

[11] F. Klein, “Sur une représentation géométrique du développement en fraction continue ordinaire”, Nouv. Ann. (3), 15 (1896), 327–331 | Zbl

[12] E. I. Korkina, “Dvumernye tsepnye drobi. Samye prostye primery”, Osobennosti gladkikh otobrazhenii s dopolnitelnymi strukturami, Sbornik statei, Tr. MIAN, 209, Nauka, M., 1995, 143–166 | MR | Zbl

[13] J.-O. Moussafir, Voiles et Polyèdres de Klein. Géométrie, Algorithmes et Statistiques, Docteur en sciences thése, Université Paris IX, Dauphine, 2000 http://www.ceremade.dauphine.fr/\texttildelow msfr/

[14] O. N. Karpenkov, “O triangulyatsiyakh torov, svyazannykh s dvumernymi tsepnymi drobyami kubicheskikh irratsionalnostei”, Funkts. analiz i ego pril., 38:2 (2004), 28–37 | MR | Zbl

[15] G. Lachaud, Voiles et Polyèdres de Klein, Preprint no. 95-22, Laboratoire de Mathématiques Discrètes du C.N.R.S., Luminy, 1995

[16] O. Karpenkov, Elementary notions of lattice trigonometry, arXiv: math.CO/0604129

[17] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, Nauka, M., 1985 | MR | Zbl

[18] Yu. I. Manin, M. Marcolli, Continued fractions, modular symbols, and non-commutative geometry, arXiv: math.NT/0102006