Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_88_1_a2, author = {O. N. Karpenkov}, title = {Determination of {Periods} of {Geometric} {Continued} {Fractions} for {Two-Dimensional} {Algebraic} {Hyperbolic} {Operators}}, journal = {Matemati\v{c}eskie zametki}, pages = {30--42}, publisher = {mathdoc}, volume = {88}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a2/} }
TY - JOUR AU - O. N. Karpenkov TI - Determination of Periods of Geometric Continued Fractions for Two-Dimensional Algebraic Hyperbolic Operators JO - Matematičeskie zametki PY - 2010 SP - 30 EP - 42 VL - 88 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a2/ LA - ru ID - MZM_2010_88_1_a2 ER -
O. N. Karpenkov. Determination of Periods of Geometric Continued Fractions for Two-Dimensional Algebraic Hyperbolic Operators. Matematičeskie zametki, Tome 88 (2010) no. 1, pp. 30-42. http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a2/
[1] J. Lewis, D. Zagier, “Period functions and the Selberg zeta function for the modular group”, The Mathematical Beauty of Physics, Adv. Ser. Math. Phys., 24, World Sci., Singapore, 1997, 83–97 | MR | Zbl
[2] V. I. Arnold, Zadachi Arnolda, Fazis, M., 2000 | MR | Zbl
[3] V. I. Arnold, Tsepnye drobi, MTsNMO, M., 2002
[4] M. Pavlovskaya, Continued Fraction Expansions of Matrix Eigenvectors, preprint, 2007
[5] M. O. Avdeeva, V. A. Bykovskii, Reshenie zadachi Arnolda o statistikakh Gaussa–Kuzmina, Preprint DVO RAN no. 08, Dalnauka, Vladivostok, 2002
[6] M. O. Avdeeva, “O statistikakh nepolnykh chastnykh konechnykh tsepnykh drobei”, Funkts. analiz i ego pril., 38:2 (2004), 1–11 | MR | Zbl
[7] V. I. Arnold, “Arifmetika sovershennykh kvadratichnykh form, simmetriya ikh nepreryvnykh drobei i geometriya ikh mira de Sittera”, Materialy letnei shkoly “Sovremennaya Matematika” (16–28 iyulya 2002 g., Dubna), Obschie lektsii http://www.mccme.ru/dubna/2002/material.htm
[8] S. Katok, Continued fractions, Hyperbolic Geometry and Quadratic Forms Course Notes for MATH 497A REU Program, Summer 2001 http://www.math.psu.edu/katok_s/pub/reu-book.ps
[9] D. R. Hickerson, “Length of period of simple continued fraction expansion of $\sqrt d$”, Pacific J. Math., 46:2 (1973), 429–432 | MR | Zbl
[10] F. Klein, “Ueber eine geometrische Auffassung der gewöhnlichen Kettenbruchentwickelung”, Gott. Nachr., 3 (1895), 357–359 | Zbl
[11] F. Klein, “Sur une représentation géométrique du développement en fraction continue ordinaire”, Nouv. Ann. (3), 15 (1896), 327–331 | Zbl
[12] E. I. Korkina, “Dvumernye tsepnye drobi. Samye prostye primery”, Osobennosti gladkikh otobrazhenii s dopolnitelnymi strukturami, Sbornik statei, Tr. MIAN, 209, Nauka, M., 1995, 143–166 | MR | Zbl
[13] J.-O. Moussafir, Voiles et Polyèdres de Klein. Géométrie, Algorithmes et Statistiques, Docteur en sciences thése, Université Paris IX, Dauphine, 2000 http://www.ceremade.dauphine.fr/\texttildelow msfr/
[14] O. N. Karpenkov, “O triangulyatsiyakh torov, svyazannykh s dvumernymi tsepnymi drobyami kubicheskikh irratsionalnostei”, Funkts. analiz i ego pril., 38:2 (2004), 28–37 | MR | Zbl
[15] G. Lachaud, Voiles et Polyèdres de Klein, Preprint no. 95-22, Laboratoire de Mathématiques Discrètes du C.N.R.S., Luminy, 1995
[16] O. Karpenkov, Elementary notions of lattice trigonometry, arXiv: math.CO/0604129
[17] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, Nauka, M., 1985 | MR | Zbl
[18] Yu. I. Manin, M. Marcolli, Continued fractions, modular symbols, and non-commutative geometry, arXiv: math.NT/0102006