The Structure Theorem for Weak Module Coalgebras
Matematičeskie zametki, Tome 88 (2010) no. 1, pp. 3-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H$ be a weak Hopf algebra, let $C$ be a weak right $H$-module coalgebra, and let $\overline C=C/C\cdot \operatorname{Ker}\operatorname{\sqcap}^{L}$. We prove a structure theorem for weak module coalgebras, namely, $C$ is isomorphic as a weak right $H$-module coalgebra to a weak smash coproduct $\overline C\times H$ defined on a $k$-space $$ \{\Sigma c_{(0)}\otimes h_2\varepsilon(c_{(-1)}h_1)\mid c\in C,\,h\in H\} $$ if there exists a weak right $H$-module coalgebra map $\phi\colon C\to H$.
Keywords: weak Hopf algebra, weak Hopf bicomodule, weak comodule coalgebra, weak smash coproduct, weak module coalgebra.
@article{MZM_2010_88_1_a0,
     author = {Yu. Wang and L. Yu. Jang},
     title = {The {Structure} {Theorem} for {Weak} {Module} {Coalgebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {88},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a0/}
}
TY  - JOUR
AU  - Yu. Wang
AU  - L. Yu. Jang
TI  - The Structure Theorem for Weak Module Coalgebras
JO  - Matematičeskie zametki
PY  - 2010
SP  - 3
EP  - 17
VL  - 88
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a0/
LA  - ru
ID  - MZM_2010_88_1_a0
ER  - 
%0 Journal Article
%A Yu. Wang
%A L. Yu. Jang
%T The Structure Theorem for Weak Module Coalgebras
%J Matematičeskie zametki
%D 2010
%P 3-17
%V 88
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a0/
%G ru
%F MZM_2010_88_1_a0
Yu. Wang; L. Yu. Jang. The Structure Theorem for Weak Module Coalgebras. Matematičeskie zametki, Tome 88 (2010) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/MZM_2010_88_1_a0/

[1] G. Böhm, F. Nill, K. Szlachányi, “Weak Hopf algebras. I. Integral theory and $C^*$-structure”, J. Algebra, 221:2 (1999), 385–438 | DOI | MR | Zbl

[2] T. Hayashi, “Quantum group symmetry of partition functions of IRF models and its application to Jones' index theory”, Comm. Math. Phys., 157:2 (1993), 331–345 | DOI | MR | Zbl

[3] D. Nikshych, L. Vainerman, “Finite quantum groupoids and their applications”, New directions in Hopf algebras, Math. Sci. Res. Inst. Publ., 43, Cambridge Univ. Press, Cambridge, 2002, 211–262 | MR | Zbl

[4] T. Yamanouchi, “Duality for generalized Kac algebras and a characterization of finite groupoid algebras”, J. Algebra, 163:1 (1994), 9–50 | DOI | MR | Zbl

[5] D. Nikshych, “A duality theorem for quantum groupoids”, New trends in Hopf algebra theory, Contemp. Math., 267, Amer. Math. Soc., Providence, RI, 2000, 237–243 | MR | Zbl

[6] L. Zhang, “Maschke-type theorem and Morita context over weak Hopf algebras”, Sci. China Ser. A, 49:5 (2006), 587–598 | DOI | MR | Zbl

[7] L. Zhang, S. Zhu, “Fundamental theorems of weak Doi–Hopf modules and semisimple weak smash product Hopf algebras”, Comm. Algebra, 32:9 (2004), 3403–3415 | DOI | MR | Zbl

[8] Y. Doi, “On the structure of relative hopf modules”, Comm. Algebra, 11:3 (1983), 243–255 | DOI | MR | Zbl

[9] Zhi-min Tsai, Liang-yun Zhang, “Fundamentalnaya teorema o slabykh otnositelnykh $[C,H]$-modulyakh Khopfa”, Matem. zametki, 82:4 (2007), 530–537 | MR | Zbl

[10] G. Militaru, D. Stefan, “Extending modules for Hopf–Galois extensions”, Comm. Algebra, 22:14 (1994), 5657–5678 | DOI | MR | Zbl

[11] F. Panaite, F. Van Oystaeyen, “A structure theorem for quasi-Hopf comodule algebras”, Proc. Amer. Math. Soc., 135:6 (2007), 1669–1677 | DOI | MR | Zbl

[12] R. K. Molnar, “Semi-direct products of Hopf algebras”, J. Algebra, 47:1 (1977), 29–51 | DOI | MR | Zbl

[13] S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Regional Conf. Ser. in Math., 82, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl

[14] G. Böhm, “Doi–Hopf modules over weak Hopf algebras”, Comm. Algebra, 28:10 (2000), 4687–4698 | DOI | MR | Zbl