A Small Decrease in the Degree of a Polynomial with a Given Sign Function Can Exponentially Increase Its Weight and Length
Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 885-899

Voir la notice de l'article provenant de la source Math-Net.Ru

A Boolean function $f\colon\{-1,+1\}^n\to\{-1,+1\}$ is called the sign function of an integer-valued polynomial $p(x)$ if $f(x)=\operatorname{sgn}(p(x))$ for all $x\in\{-1,+1\}^n$. In this case, the polynomial $p(x)$ is called a perceptron for the Boolean function $f$. The weight of a perceptron is the sum of absolute values of the coefficients of $p$. We prove that, for a given function, a small change in the degree of a perceptron can strongly affect the value of the required weight. More precisely, for each $d=1,2,\dots,n-1$, we explicitly construct a function $f\colon\{-1,+1\}^n\to\{-1,+1\}$ that requires a weight of the form $\exp\{\Theta(n)\}$ when it is represented by a degree $d$ perceptron, and that can be represented by a degree $d+1$ perceptron with weight equal to only $O(n^2)$. The lower bound $\exp\{\Theta(n)\}$ for the degree $d$ also holds for the size of the depth 2 Boolean circuit with a majority function at the top and arbitrary gates of input degree $d$ at the bottom. This gap in the weight values is exponentially larger than those that have been previously found. A similar result is proved for the perceptron length, i.e., for the number of monomials contained in it.
Keywords: Boolean function, integer-valued polynomial, sign function, Boolean circuit, complexity theory, exponential gap.
Mots-clés : perceptron, discrete Fourier transform
@article{MZM_2010_87_6_a9,
     author = {V. V. Podolskii and A. A. Sherstov},
     title = {A {Small} {Decrease} in the {Degree} of a {Polynomial} with a {Given} {Sign} {Function} {Can} {Exponentially} {Increase} {Its} {Weight} and {Length}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {885--899},
     publisher = {mathdoc},
     volume = {87},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a9/}
}
TY  - JOUR
AU  - V. V. Podolskii
AU  - A. A. Sherstov
TI  - A Small Decrease in the Degree of a Polynomial with a Given Sign Function Can Exponentially Increase Its Weight and Length
JO  - Matematičeskie zametki
PY  - 2010
SP  - 885
EP  - 899
VL  - 87
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a9/
LA  - ru
ID  - MZM_2010_87_6_a9
ER  - 
%0 Journal Article
%A V. V. Podolskii
%A A. A. Sherstov
%T A Small Decrease in the Degree of a Polynomial with a Given Sign Function Can Exponentially Increase Its Weight and Length
%J Matematičeskie zametki
%D 2010
%P 885-899
%V 87
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a9/
%G ru
%F MZM_2010_87_6_a9
V. V. Podolskii; A. A. Sherstov. A Small Decrease in the Degree of a Polynomial with a Given Sign Function Can Exponentially Increase Its Weight and Length. Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 885-899. http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a9/