The Variety of Jordan Algebras Determined by the Identity $(xy)(zt)\equiv0$ Has Almost Polynomial Growth
Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 877-884
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that, in the case of ground field of characteristic zero, the variety cited in the title has almost polynomial growth. We construct an algebra generating this variety and completely describe the structure of the multilinear part of the variety as a module of the symmetric group.
Keywords:
variety of algebras, linear algebra over a field, Jordan algebra, growth of an algebra, symmetric group, polynomial identity, irreducible representation, Young diagram.
@article{MZM_2010_87_6_a8,
author = {S. P. Mishchenko and A. V. Popov},
title = {The {Variety} of {Jordan} {Algebras} {Determined} by the {Identity} $(xy)(zt)\equiv0$ {Has} {Almost} {Polynomial} {Growth}},
journal = {Matemati\v{c}eskie zametki},
pages = {877--884},
publisher = {mathdoc},
volume = {87},
number = {6},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a8/}
}
TY - JOUR AU - S. P. Mishchenko AU - A. V. Popov TI - The Variety of Jordan Algebras Determined by the Identity $(xy)(zt)\equiv0$ Has Almost Polynomial Growth JO - Matematičeskie zametki PY - 2010 SP - 877 EP - 884 VL - 87 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a8/ LA - ru ID - MZM_2010_87_6_a8 ER -
%0 Journal Article %A S. P. Mishchenko %A A. V. Popov %T The Variety of Jordan Algebras Determined by the Identity $(xy)(zt)\equiv0$ Has Almost Polynomial Growth %J Matematičeskie zametki %D 2010 %P 877-884 %V 87 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a8/ %G ru %F MZM_2010_87_6_a8
S. P. Mishchenko; A. V. Popov. The Variety of Jordan Algebras Determined by the Identity $(xy)(zt)\equiv0$ Has Almost Polynomial Growth. Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 877-884. http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a8/