The Variety of Jordan Algebras Determined by the Identity $(xy)(zt)\equiv0$ Has Almost Polynomial Growth
Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 877-884.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that, in the case of ground field of characteristic zero, the variety cited in the title has almost polynomial growth. We construct an algebra generating this variety and completely describe the structure of the multilinear part of the variety as a module of the symmetric group.
Keywords: variety of algebras, linear algebra over a field, Jordan algebra, growth of an algebra, symmetric group, polynomial identity, irreducible representation, Young diagram.
@article{MZM_2010_87_6_a8,
     author = {S. P. Mishchenko and A. V. Popov},
     title = {The {Variety} of {Jordan} {Algebras} {Determined} by the {Identity} $(xy)(zt)\equiv0$ {Has} {Almost} {Polynomial} {Growth}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {877--884},
     publisher = {mathdoc},
     volume = {87},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a8/}
}
TY  - JOUR
AU  - S. P. Mishchenko
AU  - A. V. Popov
TI  - The Variety of Jordan Algebras Determined by the Identity $(xy)(zt)\equiv0$ Has Almost Polynomial Growth
JO  - Matematičeskie zametki
PY  - 2010
SP  - 877
EP  - 884
VL  - 87
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a8/
LA  - ru
ID  - MZM_2010_87_6_a8
ER  - 
%0 Journal Article
%A S. P. Mishchenko
%A A. V. Popov
%T The Variety of Jordan Algebras Determined by the Identity $(xy)(zt)\equiv0$ Has Almost Polynomial Growth
%J Matematičeskie zametki
%D 2010
%P 877-884
%V 87
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a8/
%G ru
%F MZM_2010_87_6_a8
S. P. Mishchenko; A. V. Popov. The Variety of Jordan Algebras Determined by the Identity $(xy)(zt)\equiv0$ Has Almost Polynomial Growth. Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 877-884. http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a8/

[1] A. I. Maltsev, “Ob algebrakh s tozhdestvennymi opredelyayuschimi sootnosheniyami”, Matem. sb., 26:1 (1950), 19–33 | MR | Zbl

[2] A. Giambruno, M. Zaicev, “Exponential codimension growth of PI algebras: an exact estimate”, Adv. Math., 142:2 (1999), 221–243 | DOI | MR | Zbl

[3] I. B. Volichenko, “Mnogoobrazie algebr Li s tozhdestvom $[[x_1,x_2,x_3],[x_4,x_5,x_6]]=0$ nad polem kharakteristiki nul”, Sib. matem. zhurn., 25:3 (1984), 40–54 | MR | Zbl

[4] M. V. Zaitcev, S. P. Mishchenko, “An example of a variety of Lie algebras with a fractional exponent”, J. Math. Sci. (New York), 93:6 (1999), 977–982 | DOI | MR | Zbl

[5] S. P. Mischenko, “O mnogoobraziyakh polinomialnogo rosta algebr Li nad polem kharakteristiki nul”, Matem. zametki, 40:6 (1986), 713–721 | MR | Zbl

[6] S. R. Sverchkov, “O razreshimykh indeksa 2 iordanovykh algebrakh”, Matem. sb., 121:1 (1983), 40–47 | MR | Zbl

[7] V. S. Drensky, T. G. Rashkova, “Varieties of metabelian Jordan algebras”, Serdica, 15:4 (1989), 293–301 | MR | Zbl

[8] K. A. Zhevlakov, A. M. Slinko, I. P. Shestakov, A. I. Shirshov, Koltsa, blizkie k assotsiativnym, Sovremennaya algebra, Nauka, M., 1978 | MR | Zbl

[9] Yu. A. Bakhturin, Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR | Zbl

[10] A. Giambruno, M. Zaicev, Polynomial Identities and Asymptotic Methods, Math. Surveys Monogr., 122, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl