Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_87_6_a8, author = {S. P. Mishchenko and A. V. Popov}, title = {The {Variety} of {Jordan} {Algebras} {Determined} by the {Identity} $(xy)(zt)\equiv0$ {Has} {Almost} {Polynomial} {Growth}}, journal = {Matemati\v{c}eskie zametki}, pages = {877--884}, publisher = {mathdoc}, volume = {87}, number = {6}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a8/} }
TY - JOUR AU - S. P. Mishchenko AU - A. V. Popov TI - The Variety of Jordan Algebras Determined by the Identity $(xy)(zt)\equiv0$ Has Almost Polynomial Growth JO - Matematičeskie zametki PY - 2010 SP - 877 EP - 884 VL - 87 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a8/ LA - ru ID - MZM_2010_87_6_a8 ER -
%0 Journal Article %A S. P. Mishchenko %A A. V. Popov %T The Variety of Jordan Algebras Determined by the Identity $(xy)(zt)\equiv0$ Has Almost Polynomial Growth %J Matematičeskie zametki %D 2010 %P 877-884 %V 87 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a8/ %G ru %F MZM_2010_87_6_a8
S. P. Mishchenko; A. V. Popov. The Variety of Jordan Algebras Determined by the Identity $(xy)(zt)\equiv0$ Has Almost Polynomial Growth. Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 877-884. http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a8/