On the Extrinsic Curvature and the Extrinsic Structure of Normal Developable $C^1$ Surfaces
Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 900-906.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that any normal $C^1$ surface developable in the sense of Shefel has zero extrinsic curvature in the sense of Pogorelov. A condition under which such a surface has a standard line of striction is obtained.
Keywords: normal developable surface, extrinsic curvature, line of striction, conical surface, cylindrical surface, torsial surface.
@article{MZM_2010_87_6_a10,
     author = {I. Kh. Sabitov},
     title = {On the {Extrinsic} {Curvature} and the {Extrinsic} {Structure} of {Normal} {Developable} $C^1$ {Surfaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {900--906},
     publisher = {mathdoc},
     volume = {87},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a10/}
}
TY  - JOUR
AU  - I. Kh. Sabitov
TI  - On the Extrinsic Curvature and the Extrinsic Structure of Normal Developable $C^1$ Surfaces
JO  - Matematičeskie zametki
PY  - 2010
SP  - 900
EP  - 906
VL  - 87
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a10/
LA  - ru
ID  - MZM_2010_87_6_a10
ER  - 
%0 Journal Article
%A I. Kh. Sabitov
%T On the Extrinsic Curvature and the Extrinsic Structure of Normal Developable $C^1$ Surfaces
%J Matematičeskie zametki
%D 2010
%P 900-906
%V 87
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a10/
%G ru
%F MZM_2010_87_6_a10
I. Kh. Sabitov. On the Extrinsic Curvature and the Extrinsic Structure of Normal Developable $C^1$ Surfaces. Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 900-906. http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a10/

[1] S. Z. Shefel, “$C^1$-gladkie izometricheskie pogruzheniya”, Sib. matem. zhurn., 15:6 (1974), 1372–1393 | MR | Zbl

[2] S. Z. Shefel, “$C^1$-gladkie poverkhnosti ogranichennoi vneshnei polozhitelnoi krivizny”, Sib. matem. zhurn., 16:5 (1975), 1122–1123 | MR | Zbl

[3] Yu. D. Burago, “Neravenstva izoperimetricheskogo tipa v teorii poverkhnostei ogranichennoi vneshnei krivizny”, Zap. nauchn. sem. LOMI, 10, Izd-vo «Nauka», Leningrad. otd., L., 1968, 3–202 | MR | Zbl

[4] Yu. D. Burago, “Geometriya poverkhnostei v evklidovykh prostranstvakh”, Geometriya – 3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 48, VINITI, M., 1989, 5–97 | MR | Zbl

[5] I. Kh. Sabitov, Isometric Immersions and Embeddings of Locally Euclidean Metrics, Cambridge Sci. Publ., Cambridge, 2009

[6] A. V. Pogorelov, Poverkhnosti ogranichennoi vneshnei krivizny, Izd-vo Kharkov. un-ta, Kharkov, 1956 | Zbl

[7] A. V. Pogorelov, Vneshnyaya geometriya vypuklykh poverkhnostei, Nauka, M., 1969 | MR | Zbl

[8] M. V. Korobkov, “Svoistva $C^1$-gladkikh funktsii, mnozhestvo znachenii gradienta kotorykh topologicheski odnomerno”, Dokl. RAN, 430:1 (2010), 18–20

[9] L. I. Kamynin, Kurs matematicheskogo analiza, v. 2, Izd-vo MGU, M., 1995 | MR | Zbl

[10] I. Kh. Sabitov, “Izometricheskie pogruzheniya i vlozheniya lokalno evklidovykh metrik v $\mathbb R^2$”, Izv. RAN. Ser. matem., 63:6 (1999), 147–166 | MR | Zbl

[11] I. Kh. Sabitov, “O razvertyvayuschikhsya lineichatykh poverkhnostyakh s maloi gladkostyu”, Sib. matem. zhurn., 50:5 (2009), 1163–1175 | MR

[12] W. Klingenberg, A Course in Differential Geometry, Grad. Texts Math., 51, Springer-Verlag, New York–Heidelberg, 1978 | MR | Zbl

[13] V. Ushakov, “Parameterisation of developable surfaces by asymptotic lines”, Bull. Austral. Math. Soc., 54:3 (1996), 411–421 | DOI | MR | Zbl