On the Extrinsic Curvature and the Extrinsic Structure of Normal Developable $C^1$ Surfaces
Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 900-906

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that any normal $C^1$ surface developable in the sense of Shefel has zero extrinsic curvature in the sense of Pogorelov. A condition under which such a surface has a standard line of striction is obtained.
Keywords: normal developable surface, extrinsic curvature, line of striction, conical surface, cylindrical surface, torsial surface.
@article{MZM_2010_87_6_a10,
     author = {I. Kh. Sabitov},
     title = {On the {Extrinsic} {Curvature} and the {Extrinsic} {Structure} of {Normal} {Developable} $C^1$ {Surfaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {900--906},
     publisher = {mathdoc},
     volume = {87},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a10/}
}
TY  - JOUR
AU  - I. Kh. Sabitov
TI  - On the Extrinsic Curvature and the Extrinsic Structure of Normal Developable $C^1$ Surfaces
JO  - Matematičeskie zametki
PY  - 2010
SP  - 900
EP  - 906
VL  - 87
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a10/
LA  - ru
ID  - MZM_2010_87_6_a10
ER  - 
%0 Journal Article
%A I. Kh. Sabitov
%T On the Extrinsic Curvature and the Extrinsic Structure of Normal Developable $C^1$ Surfaces
%J Matematičeskie zametki
%D 2010
%P 900-906
%V 87
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a10/
%G ru
%F MZM_2010_87_6_a10
I. Kh. Sabitov. On the Extrinsic Curvature and the Extrinsic Structure of Normal Developable $C^1$ Surfaces. Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 900-906. http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a10/