Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_87_6_a1, author = {V. L. Vereshchagin}, title = {Single-Phase {Averaging} for the {Ablowitz--Ladik} {Chain}}, journal = {Matemati\v{c}eskie zametki}, pages = {814--824}, publisher = {mathdoc}, volume = {87}, number = {6}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a1/} }
V. L. Vereshchagin. Single-Phase Averaging for the Ablowitz--Ladik Chain. Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 814-824. http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a1/
[1] M. J. Ablowitz, J. F. Ladik, “Nonlinear differential-difference equations”, J. Math. Phys., 16:3 (1975), 598–603 | DOI | MR | Zbl
[2] F. Gesztesy, H. Holden, J. Michor, G. Teschl, Soliton Equations and Their Algebro-Geometric Solutions, v. 2, Cambridge Stud. Adv. Math., 114, $(1+1)$-Dimensional Discrete Models, Cambridge Univ. Press, Cambridge, 2008 | MR | Zbl
[3] F .Gesztesy, H. Holden, J. Michor, G. Teschl, The Ablowitz–Ladik Hierarchy Revisited, arXiv: nlin.SI/0702058
[4] F .Gesztesy, H. Holden, J. Michor, G. Teschl, Local Conservation Laws and the Hamiltonian Formalism for the Ablowitz–Ladik Hierarchy, arXiv: nlin.SI/0711.1644
[5] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Math. Soc. Lecture Note Ser., 149, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl
[6] M. J. Ablowitz, J. F. Ladik, “A nonlinear difference scheme and inverse scattering”, Stud. Appl. Math., 55:3 (1976), 213–229 | MR | Zbl
[7] P. D. Miller, N. M. Ercolani, I. M. Krichever, C. D. Levermore, “Finite genus solutions to the Ablowitz–Ladik equations”, Comm. Pure Appl. Math., 48:12 (1995), 1369–1440 | MR | Zbl
[8] A. Ya. Maltsev, “Usrednenie gamiltonovykh struktur v diskretnom variante metoda Uizema”, UMN, 53:1 (1998), 219–220 | MR | Zbl
[9] A. V. Gurevich, L. P. Pitaevskii, “Raspad nachalnogo razryva v uravnenii Kortevega–de Friza”, Pisma v ZhETF, 17:5 (1973), 268–271
[10] A. V. Gurevich, L. P. Pitaevskii, “Nestatsionarnaya struktura besstolknovitelnoi udarnoi volny”, ZhETF, 65:2 (1973), 590–604
[11] V. V. Avilov, S. P. Novikov, “Evolyutsiya Uitemovskoi zony v teorii KdF”, Dokl. AN SSSR, 294:2 (1987), 325–329 | MR
[12] P. D. Lax, C. D. Levermore, S. Venakides, “The generation and propagation of oscillations in dispersive initial value problems and their limiting behavior”, Important Developments in Soliton Theory, Springer Ser. Nonlinear Dynam., Springer-Verlag, Berlin, 1993, 205–241 | MR | Zbl
[13] R. F. Bikbaev, “Kompleksnye deformatsii Uizema v zadachakh s “integriruemoi neustoichivostyu””, TMF, 104:3 (1995), 393–419 | MR | Zbl
[14] P. Deift, S. Venakides, X. Zhou, “New results in small dispersion KdV by an extension of the steepest descent method for Riemann–Hilbert problems”, Internat. Math. Res. Notices, 1997, no. 6, 285–299 | MR | Zbl
[15] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Spravochnaya matematicheskaya biblioteka, 14, Nauka, M., 1967 | MR | Zbl
[16] B. A. Dubrovin, S. P. Novikov, “Gidrodinamika slabo deformirovannykh solitonnykh reshetok. Differentsialnaya geometriya i gamiltonova teoriya”, UMN, 44:6 (1989), 29–98 | MR | Zbl
[17] A. Ya. Maltsev, “Nasledovanie gamiltonovykh struktur v metode usredneniya Uizema”, Izv. RAN. Ser. matem., 63:6 (1999), 117–146 | MR | Zbl
[18] H. Flaschka, M. G. Forest, D. W. McLaughlin, “Multiphase averaging and the inverse spectral solution of the Korteweg–de Vries equation”, Comm. Pure Appl. Math., 33:6 (1980), 739–784 | DOI | MR | Zbl