Single-Phase Averaging for the Ablowitz--Ladik Chain
Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 814-824.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Bogolyubov–Whitham averaging method is applied to the Ablowitz–Ladik chain \begin{align*} -i\dot q_n-(1-q_nr_n)(q_{n-1}+q_{n+1})+2q_n=0, \\ -i\dot r_n+(1-q_nr_n)(r_{n-1}+r_{n+1})-2r_n=0 \end{align*} in the single-phase case. We consider an averaged system and prove that the Hamiltonian property is preserved under averaging. The single-phase solutions are written in terms of elliptic functions and, in the “focusing” case, Riemannian invariants are obtained for modulation equations. The characteristic rates of the averaged system are stated in terms of complete elliptic integrals and the self-similar solutions of the system are obtained. Results of the corresponding simulations are given.
Keywords: Ablowitz–Ladik chain, Bogolyubov–Whitham averaging, single-phase averaging, elliptic function, self-similar solution, Weierstrass zeta function.
Mots-clés : modulation equation
@article{MZM_2010_87_6_a1,
     author = {V. L. Vereshchagin},
     title = {Single-Phase {Averaging} for the {Ablowitz--Ladik} {Chain}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {814--824},
     publisher = {mathdoc},
     volume = {87},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a1/}
}
TY  - JOUR
AU  - V. L. Vereshchagin
TI  - Single-Phase Averaging for the Ablowitz--Ladik Chain
JO  - Matematičeskie zametki
PY  - 2010
SP  - 814
EP  - 824
VL  - 87
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a1/
LA  - ru
ID  - MZM_2010_87_6_a1
ER  - 
%0 Journal Article
%A V. L. Vereshchagin
%T Single-Phase Averaging for the Ablowitz--Ladik Chain
%J Matematičeskie zametki
%D 2010
%P 814-824
%V 87
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a1/
%G ru
%F MZM_2010_87_6_a1
V. L. Vereshchagin. Single-Phase Averaging for the Ablowitz--Ladik Chain. Matematičeskie zametki, Tome 87 (2010) no. 6, pp. 814-824. http://geodesic.mathdoc.fr/item/MZM_2010_87_6_a1/

[1] M. J. Ablowitz, J. F. Ladik, “Nonlinear differential-difference equations”, J. Math. Phys., 16:3 (1975), 598–603 | DOI | MR | Zbl

[2] F. Gesztesy, H. Holden, J. Michor, G. Teschl, Soliton Equations and Their Algebro-Geometric Solutions, v. 2, Cambridge Stud. Adv. Math., 114, $(1+1)$-Dimensional Discrete Models, Cambridge Univ. Press, Cambridge, 2008 | MR | Zbl

[3] F .Gesztesy, H. Holden, J. Michor, G. Teschl, The Ablowitz–Ladik Hierarchy Revisited, arXiv: nlin.SI/0702058

[4] F .Gesztesy, H. Holden, J. Michor, G. Teschl, Local Conservation Laws and the Hamiltonian Formalism for the Ablowitz–Ladik Hierarchy, arXiv: nlin.SI/0711.1644

[5] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Math. Soc. Lecture Note Ser., 149, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl

[6] M. J. Ablowitz, J. F. Ladik, “A nonlinear difference scheme and inverse scattering”, Stud. Appl. Math., 55:3 (1976), 213–229 | MR | Zbl

[7] P. D. Miller, N. M. Ercolani, I. M. Krichever, C. D. Levermore, “Finite genus solutions to the Ablowitz–Ladik equations”, Comm. Pure Appl. Math., 48:12 (1995), 1369–1440 | MR | Zbl

[8] A. Ya. Maltsev, “Usrednenie gamiltonovykh struktur v diskretnom variante metoda Uizema”, UMN, 53:1 (1998), 219–220 | MR | Zbl

[9] A. V. Gurevich, L. P. Pitaevskii, “Raspad nachalnogo razryva v uravnenii Kortevega–de Friza”, Pisma v ZhETF, 17:5 (1973), 268–271

[10] A. V. Gurevich, L. P. Pitaevskii, “Nestatsionarnaya struktura besstolknovitelnoi udarnoi volny”, ZhETF, 65:2 (1973), 590–604

[11] V. V. Avilov, S. P. Novikov, “Evolyutsiya Uitemovskoi zony v teorii KdF”, Dokl. AN SSSR, 294:2 (1987), 325–329 | MR

[12] P. D. Lax, C. D. Levermore, S. Venakides, “The generation and propagation of oscillations in dispersive initial value problems and their limiting behavior”, Important Developments in Soliton Theory, Springer Ser. Nonlinear Dynam., Springer-Verlag, Berlin, 1993, 205–241 | MR | Zbl

[13] R. F. Bikbaev, “Kompleksnye deformatsii Uizema v zadachakh s “integriruemoi neustoichivostyu””, TMF, 104:3 (1995), 393–419 | MR | Zbl

[14] P. Deift, S. Venakides, X. Zhou, “New results in small dispersion KdV by an extension of the steepest descent method for Riemann–Hilbert problems”, Internat. Math. Res. Notices, 1997, no. 6, 285–299 | MR | Zbl

[15] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Spravochnaya matematicheskaya biblioteka, 14, Nauka, M., 1967 | MR | Zbl

[16] B. A. Dubrovin, S. P. Novikov, “Gidrodinamika slabo deformirovannykh solitonnykh reshetok. Differentsialnaya geometriya i gamiltonova teoriya”, UMN, 44:6 (1989), 29–98 | MR | Zbl

[17] A. Ya. Maltsev, “Nasledovanie gamiltonovykh struktur v metode usredneniya Uizema”, Izv. RAN. Ser. matem., 63:6 (1999), 117–146 | MR | Zbl

[18] H. Flaschka, M. G. Forest, D. W. McLaughlin, “Multiphase averaging and the inverse spectral solution of the Korteweg–de Vries equation”, Comm. Pure Appl. Math., 33:6 (1980), 739–784 | DOI | MR | Zbl