$C^*$-Algebras Generated by Mappings
Matematičeskie zametki, Tome 87 (2010) no. 5, pp. 694-703.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, some properties of a singly generated $C^*$-subalgebra of the algebra of all bounded operators $B(l^2(X))$ on the Hilbert space $l^2(X)$ with the generator $T_\varphi$ induced by a mapping $\varphi$ of an infinite set $X$ into itself are investigated. A condition on $\varphi$ is presented under which the operator $T_\varphi$ is continuous, and it is proved that, if this is the case, then the study of these algebras can be reduced to that of $C^*$-algebras generated by a finite family of partial isometries of a special form. A complete description of the $C^*$-algebras generated by an injective mapping on $X$ is given. Examples of $C^*$-algebras generated by noninjective mappings are treated.
Keywords: C^*$-algebra, $C^*$-algebra generated by a mapping, injective mapping, partial isometry, Toeplitz algebra, Cuntz algebra.
@article{MZM_2010_87_5_a4,
     author = {S. A. Grigoryan and A. Yu. Kuznetsova},
     title = {$C^*${-Algebras} {Generated} by {Mappings}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {694--703},
     publisher = {mathdoc},
     volume = {87},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a4/}
}
TY  - JOUR
AU  - S. A. Grigoryan
AU  - A. Yu. Kuznetsova
TI  - $C^*$-Algebras Generated by Mappings
JO  - Matematičeskie zametki
PY  - 2010
SP  - 694
EP  - 703
VL  - 87
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a4/
LA  - ru
ID  - MZM_2010_87_5_a4
ER  - 
%0 Journal Article
%A S. A. Grigoryan
%A A. Yu. Kuznetsova
%T $C^*$-Algebras Generated by Mappings
%J Matematičeskie zametki
%D 2010
%P 694-703
%V 87
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a4/
%G ru
%F MZM_2010_87_5_a4
S. A. Grigoryan; A. Yu. Kuznetsova. $C^*$-Algebras Generated by Mappings. Matematičeskie zametki, Tome 87 (2010) no. 5, pp. 694-703. http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a4/

[1] Zh. Emkh, Algebraicheskie metody v statisticheskoi mekhanike i kvantovoi teorii polya, Mir, M., 1976 | Zbl

[2] O. Bratteli, D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics., v. 2, Texts Monogr. Phys., Equilibrium States, Models in Quantum Statistical Mehanics, Springer-Verlag, Berlin, 1997 | MR | Zbl

[3] Dzh. Merfi, $C^*$-algebry i teoriya operatorov, Faktorial, M., 1997 | MR | Zbl

[4] J. Cuntz, “Simple $C^*$-algebras generated by izometries”, Comm. Math. Phys., 57:2 (1977), 173–185 | DOI | MR | Zbl

[5] C. A. Berger, L. A. Coburn, A. Lebow, “Representation and index theory for $C^*$-algebras generated by commuting izometries”, J. Funct. Anal., 27:1 (1978), 51–99 | MR | Zbl

[6] V. A. Arzumanian, A. M. Vershik, “Star algebras assosiated with endomorphisms”, Operator Algebras and Group Representations, Vol. 1 (Neptun, 1980), Monogr. Stud. Math., 17, Pitman Press, Boston, MA, 1984, 17–27 | MR | Zbl

[7] V. Deaconu, “Generalized Cuntz–Krieger algebras”, Proc. Amer. Math. Soc., 124:11 (1996), 3427–3435 | DOI | MR | Zbl

[8] M. V. Pimsner, “A class of $C^*-$algebras generalizing both Cuntz–Krieger algebras and crossed products by $\mathbb Z$”, Free Probability Theory (Waterloo, ON, 1995), Field Inst. Commun., 12, Amer. Math. Soc., Providense, RI, 1997, 189–212 | MR | Zbl

[9] A. Kumjian, On certain Cuntz–Pimsner algebras, arXiv: math.OA/0108194

[10] P. E. T. Jorgensen, D. P. Proskurin, Y. S. Samoilenko, On $C^*$-algebras generated by pairs of $q$-commuting isometries, arXiv: math.OA/0311115

[11] A. Hopenwasser, J. R. Peters, S. C. Power, “Subalgebras of graph $C^*$-algebras”, New York J. Math., 11 (2005), 351–386 | MR | Zbl

[12] S. A. Grigoryan, A. Yu. Kuznetsova, “$C^*$-algebry, porozhdennye otobrazheniyami”, Materialy shkoly-seminara “Volga-2006”, Kazan, 2006, 28