$C^*$-Algebras Generated by Mappings
Matematičeskie zametki, Tome 87 (2010) no. 5, pp. 694-703

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, some properties of a singly generated $C^*$-subalgebra of the algebra of all bounded operators $B(l^2(X))$ on the Hilbert space $l^2(X)$ with the generator $T_\varphi$ induced by a mapping $\varphi$ of an infinite set $X$ into itself are investigated. A condition on $\varphi$ is presented under which the operator $T_\varphi$ is continuous, and it is proved that, if this is the case, then the study of these algebras can be reduced to that of $C^*$-algebras generated by a finite family of partial isometries of a special form. A complete description of the $C^*$-algebras generated by an injective mapping on $X$ is given. Examples of $C^*$-algebras generated by noninjective mappings are treated.
Keywords: C^*$-algebra, $C^*$-algebra generated by a mapping, injective mapping, partial isometry, Toeplitz algebra, Cuntz algebra.
@article{MZM_2010_87_5_a4,
     author = {S. A. Grigoryan and A. Yu. Kuznetsova},
     title = {$C^*${-Algebras} {Generated} by {Mappings}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {694--703},
     publisher = {mathdoc},
     volume = {87},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a4/}
}
TY  - JOUR
AU  - S. A. Grigoryan
AU  - A. Yu. Kuznetsova
TI  - $C^*$-Algebras Generated by Mappings
JO  - Matematičeskie zametki
PY  - 2010
SP  - 694
EP  - 703
VL  - 87
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a4/
LA  - ru
ID  - MZM_2010_87_5_a4
ER  - 
%0 Journal Article
%A S. A. Grigoryan
%A A. Yu. Kuznetsova
%T $C^*$-Algebras Generated by Mappings
%J Matematičeskie zametki
%D 2010
%P 694-703
%V 87
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a4/
%G ru
%F MZM_2010_87_5_a4
S. A. Grigoryan; A. Yu. Kuznetsova. $C^*$-Algebras Generated by Mappings. Matematičeskie zametki, Tome 87 (2010) no. 5, pp. 694-703. http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a4/