Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_87_5_a4, author = {S. A. Grigoryan and A. Yu. Kuznetsova}, title = {$C^*${-Algebras} {Generated} by {Mappings}}, journal = {Matemati\v{c}eskie zametki}, pages = {694--703}, publisher = {mathdoc}, volume = {87}, number = {5}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a4/} }
S. A. Grigoryan; A. Yu. Kuznetsova. $C^*$-Algebras Generated by Mappings. Matematičeskie zametki, Tome 87 (2010) no. 5, pp. 694-703. http://geodesic.mathdoc.fr/item/MZM_2010_87_5_a4/
[1] Zh. Emkh, Algebraicheskie metody v statisticheskoi mekhanike i kvantovoi teorii polya, Mir, M., 1976 | Zbl
[2] O. Bratteli, D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics., v. 2, Texts Monogr. Phys., Equilibrium States, Models in Quantum Statistical Mehanics, Springer-Verlag, Berlin, 1997 | MR | Zbl
[3] Dzh. Merfi, $C^*$-algebry i teoriya operatorov, Faktorial, M., 1997 | MR | Zbl
[4] J. Cuntz, “Simple $C^*$-algebras generated by izometries”, Comm. Math. Phys., 57:2 (1977), 173–185 | DOI | MR | Zbl
[5] C. A. Berger, L. A. Coburn, A. Lebow, “Representation and index theory for $C^*$-algebras generated by commuting izometries”, J. Funct. Anal., 27:1 (1978), 51–99 | MR | Zbl
[6] V. A. Arzumanian, A. M. Vershik, “Star algebras assosiated with endomorphisms”, Operator Algebras and Group Representations, Vol. 1 (Neptun, 1980), Monogr. Stud. Math., 17, Pitman Press, Boston, MA, 1984, 17–27 | MR | Zbl
[7] V. Deaconu, “Generalized Cuntz–Krieger algebras”, Proc. Amer. Math. Soc., 124:11 (1996), 3427–3435 | DOI | MR | Zbl
[8] M. V. Pimsner, “A class of $C^*-$algebras generalizing both Cuntz–Krieger algebras and crossed products by $\mathbb Z$”, Free Probability Theory (Waterloo, ON, 1995), Field Inst. Commun., 12, Amer. Math. Soc., Providense, RI, 1997, 189–212 | MR | Zbl
[9] A. Kumjian, On certain Cuntz–Pimsner algebras, arXiv: math.OA/0108194
[10] P. E. T. Jorgensen, D. P. Proskurin, Y. S. Samoilenko, On $C^*$-algebras generated by pairs of $q$-commuting isometries, arXiv: math.OA/0311115
[11] A. Hopenwasser, J. R. Peters, S. C. Power, “Subalgebras of graph $C^*$-algebras”, New York J. Math., 11 (2005), 351–386 | MR | Zbl
[12] S. A. Grigoryan, A. Yu. Kuznetsova, “$C^*$-algebry, porozhdennye otobrazheniyami”, Materialy shkoly-seminara “Volga-2006”, Kazan, 2006, 28