Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_87_4_a9, author = {M. V. Nevskij}, title = {On a {Property} of $n${-Dimensional} {Simplices}}, journal = {Matemati\v{c}eskie zametki}, pages = {580--593}, publisher = {mathdoc}, volume = {87}, number = {4}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a9/} }
M. V. Nevskij. On a Property of $n$-Dimensional Simplices. Matematičeskie zametki, Tome 87 (2010) no. 4, pp. 580-593. http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a9/
[1] M. V. Nevskii, “Ob odnom sootnoshenii dlya minimalnoi normy interpolyatsionnogo proektora”, Model. i analiz inform. sistem, 16:1 (2009), 24–43
[2] P. S. Aleksandrov, Kurs analiticheskoi geometrii i lineinoi algebry, Nauka, M., 1979 | MR | Zbl
[3] P. R. Scott, “Lattices and convex sets in space”, Quart. J. Math. Oxford Ser. (2), 36:143 (1985), 359–362 | DOI | MR | Zbl
[4] P. R. Scott, “Properties of axial diameters”, Bull. Austral. Math. Soc., 39:3 (1989), 329–333 | DOI | MR | Zbl
[5] K. Radziszewski, “Sur un probleme extremal relatif aux figures inscrites et circonscrites aux figures convexes”, Ann. Univ. Mariae Curie-Skłodowska. Sect. A, 6 (1952), 5–18 | MR | Zbl
[6] V. Blyashke, Krug i shar, Nauka, M., 1967 | MR | Zbl
[7] M. Lassak, “Parallelotopes of maximum volume in a simplex”, Discrete Comput. Geom., 21:3 (1999), 449–462 | DOI | MR | Zbl
[8] M. Y. Balla, Approximation of convex bodies by parallelotopes, Internal report IC/87/310, International Centre for Theoretical Physics, Trieste, 1987
[9] M. V. Nevskii, “Geometricheskie metody v zadache o minimalnom proektore”, Model. i analiz inform. sistem, 13:2 (2006), 16–29