The Erd\H{o}s--Szekeres Theorem and Congruences
Matematičeskie zametki, Tome 87 (2010) no. 4, pp. 572-579.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following problem of combinatorial geometry is considered. Given positive integers $n$ and $q$, find or estimate a minimal number $h$ for which any set of $h$ points in general position in the plane contains $n$ vertices of a convex polygon for which the number of interior points is divisible by $q$. For a wide range of parameters, the existing bound for $h$ is dramatically improved.
Keywords: Erdős–Szekeres problem, Erdős–Szekeres theorem, Ramsey theory.
Mots-clés : convex polygon, points in convex position
@article{MZM_2010_87_4_a8,
     author = {V. A. Koshelev},
     title = {The {Erd\H{o}s--Szekeres} {Theorem} and {Congruences}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {572--579},
     publisher = {mathdoc},
     volume = {87},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a8/}
}
TY  - JOUR
AU  - V. A. Koshelev
TI  - The Erd\H{o}s--Szekeres Theorem and Congruences
JO  - Matematičeskie zametki
PY  - 2010
SP  - 572
EP  - 579
VL  - 87
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a8/
LA  - ru
ID  - MZM_2010_87_4_a8
ER  - 
%0 Journal Article
%A V. A. Koshelev
%T The Erd\H{o}s--Szekeres Theorem and Congruences
%J Matematičeskie zametki
%D 2010
%P 572-579
%V 87
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a8/
%G ru
%F MZM_2010_87_4_a8
V. A. Koshelev. The Erd\H{o}s--Szekeres Theorem and Congruences. Matematičeskie zametki, Tome 87 (2010) no. 4, pp. 572-579. http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a8/

[1] P. Erdős, G. Szekeres, “A combinatorial problem in geometry”, Compositio Math., 2 (1935), 463–470 | MR | Zbl

[2] P. Erdős, G. Szekeres, “On some extremum problems in elementary geometry”, Ann. Univ. Sci. Budapest Eötvös Sect. Math., 3–4 (1961), 53–62 | MR | Zbl

[3] W. Morris, V. Soltan, “The Erdős–Szekeres problem on points in convex position – a survey”, Bull. Amer. Math. Soc. (N.S.), 37:4 (2000), 437–458 | DOI | MR | Zbl

[4] G. Szekeres, L. Peters, “Computer solution to the 17-point Erdős–Szekeres problem”, ANZIAM J., 48:2 (2006), 151–164 | DOI | MR | Zbl

[5] G. Tóth, P. Valtr, “The Erdős–Szekeres theorem: upper bounds and related results”, Combinatorial and Computational Geometry, Math. Sci. Res. Inst. Publ., 52, Cambridge Univ. Press, Cambridge, 2005, 557–568 | MR | Zbl

[6] F. P. Ramsey, “On a problem of formal logic”, Proc. London Math. Soc. (2), 30 (1929), 264–286 | DOI | Zbl

[7] R. L. Graham, B. L. Rothschild, J. H. Spencer, Ramsey Theory, Wiley-Intersci. Ser. Discrete Math. Optim., John Wiley Sons, New York, NY, 1990 | MR | Zbl

[8] M. Kholl, Kombinatorika, Mir, M., 1970 | MR | Zbl

[9] A. Bialostocki, P. Dierker, B. Voxman, “Some notes on the Erdős–Szekeres theorem”, Discrete Math., 91:3 (1991), 231–238 | DOI | MR | Zbl

[10] Y. Caro, “On the generalized Erdős–Szekeres conjecture – a new upper bound”, Discrete Math., 160:1–3 (1996), 229–233 | DOI | MR | Zbl

[11] G. Károlyi, J. Pach, G. Tóth, “A modular version of the Erdős–Szekeres theorem”, Studia Sci. Math. Hungar, 38 (2001), 245–259 | MR | Zbl