The Erd\H{o}s--Szekeres Theorem and Congruences
Matematičeskie zametki, Tome 87 (2010) no. 4, pp. 572-579

Voir la notice de l'article provenant de la source Math-Net.Ru

The following problem of combinatorial geometry is considered. Given positive integers $n$ and $q$, find or estimate a minimal number $h$ for which any set of $h$ points in general position in the plane contains $n$ vertices of a convex polygon for which the number of interior points is divisible by $q$. For a wide range of parameters, the existing bound for $h$ is dramatically improved.
Keywords: Erdős–Szekeres problem, Erdős–Szekeres theorem, Ramsey theory.
Mots-clés : convex polygon, points in convex position
@article{MZM_2010_87_4_a8,
     author = {V. A. Koshelev},
     title = {The {Erd\H{o}s--Szekeres} {Theorem} and {Congruences}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {572--579},
     publisher = {mathdoc},
     volume = {87},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a8/}
}
TY  - JOUR
AU  - V. A. Koshelev
TI  - The Erd\H{o}s--Szekeres Theorem and Congruences
JO  - Matematičeskie zametki
PY  - 2010
SP  - 572
EP  - 579
VL  - 87
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a8/
LA  - ru
ID  - MZM_2010_87_4_a8
ER  - 
%0 Journal Article
%A V. A. Koshelev
%T The Erd\H{o}s--Szekeres Theorem and Congruences
%J Matematičeskie zametki
%D 2010
%P 572-579
%V 87
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a8/
%G ru
%F MZM_2010_87_4_a8
V. A. Koshelev. The Erd\H{o}s--Szekeres Theorem and Congruences. Matematičeskie zametki, Tome 87 (2010) no. 4, pp. 572-579. http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a8/