Uniformly Bounded Families of Riesz Bases of Exponentials, Sines, and Cosines
Matematičeskie zametki, Tome 87 (2010) no. 4, pp. 542-553.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a wide class of families of exponentials, sines, and cosines generating Riesz bases of the corresponding Hilbert spaces with uniformly bounded upper bounds and uniformly positive lower bounds.
Keywords: Riesz bases of exponentials, sines, and cosines, separable Hilbert space, Hadamard canonical product, Riemann function.
Mots-clés : Hilbert transformation
@article{MZM_2010_87_4_a6,
     author = {R. O. Hryniv},
     title = {Uniformly {Bounded} {Families} of {Riesz} {Bases} of {Exponentials,} {Sines,} and {Cosines}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {542--553},
     publisher = {mathdoc},
     volume = {87},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a6/}
}
TY  - JOUR
AU  - R. O. Hryniv
TI  - Uniformly Bounded Families of Riesz Bases of Exponentials, Sines, and Cosines
JO  - Matematičeskie zametki
PY  - 2010
SP  - 542
EP  - 553
VL  - 87
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a6/
LA  - ru
ID  - MZM_2010_87_4_a6
ER  - 
%0 Journal Article
%A R. O. Hryniv
%T Uniformly Bounded Families of Riesz Bases of Exponentials, Sines, and Cosines
%J Matematičeskie zametki
%D 2010
%P 542-553
%V 87
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a6/
%G ru
%F MZM_2010_87_4_a6
R. O. Hryniv. Uniformly Bounded Families of Riesz Bases of Exponentials, Sines, and Cosines. Matematičeskie zametki, Tome 87 (2010) no. 4, pp. 542-553. http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a6/

[1] A. M. Savchuk, A. A. Shkalikov, “O svoistvakh otobrazhenii, svyazannykh s obratnymi zadachami Shturma–Liuvillya”, Teoriya funktsii i nelineinye uravneniya v chastnykh proizvodnykh, Sbornik statei. K 70-letiyu so dnya rozhdeniya chlena-korrespondenta RAN Stanislava Ivanovicha Pokhozhaeva, Tr. MIAN, 260, MAIK, M., 2008, 227–247 | MR

[2] A. M. Savchuk, A. A. Shkalikov, “O ravnomernoi ustoichivosti v obratnykh zadachakh Shturma–Liuvillya” (to appear)

[3] R. O. Hryniv, “Uniform stability of the inverse spectral problem for Dirac operators with summable potentials” (to appear)

[4] R. O. Hryniv, “Uniform stability of the inverse spectral problem for Sturm–Liouville operators with singular potentials” (to appear)

[5] R. M. Young, An Introduction to Nonharmonic Fourier Series, Acad. Press, San Diego, CA, 2001 | MR | Zbl

[6] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR | Zbl

[7] R. E. A. C. Paley, N. Wiener, Fourier Transforms in the Complex Domain, Amer. Math. Soc. Colloq. Publ., 19, Amer. Math. Soc., Providence, RI, 1934 | MR | Zbl

[8] M. I. Kadets, “Tochnoe znachenie konstanty Peli–Vinera”, Dokl. AN SSSR, 155:6 (1964), 1253–1254 | MR | Zbl

[9] N. Levinson, Gap and Density Theorems, Amer. Math. Soc. Colloq. Publ., 29, Amer. Math. Soc., Providence, RI, 1940 | MR | Zbl

[10] R. M. Young, “On perturbing bases of complex exponentials in $L^2(-\pi,\pi)$”, Proc. Amer. Math. Soc., 53:1 (1975), 137–140 | DOI | MR | Zbl

[11] S. A. Avdonin, S. A. Ivanov, Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[12] A. M. Sedletskii, “Negarmonicheskii analiz”, Funktsionalnyi analiz, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 96, VINITI, M., 2006, 106–211 | MR | Zbl

[13] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge Math. Lib., Cambridge Univ. Press, Cambridge, 1988 | MR | Zbl

[14] X. He, H. Volkmer, “Riesz bases of solutions of Sturm–Liouville equations”, J. Fourier Anal. Appl., 7:3 (2001), 297–307 | DOI | MR | Zbl