Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_87_4_a6, author = {R. O. Hryniv}, title = {Uniformly {Bounded} {Families} of {Riesz} {Bases} of {Exponentials,} {Sines,} and {Cosines}}, journal = {Matemati\v{c}eskie zametki}, pages = {542--553}, publisher = {mathdoc}, volume = {87}, number = {4}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a6/} }
R. O. Hryniv. Uniformly Bounded Families of Riesz Bases of Exponentials, Sines, and Cosines. Matematičeskie zametki, Tome 87 (2010) no. 4, pp. 542-553. http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a6/
[1] A. M. Savchuk, A. A. Shkalikov, “O svoistvakh otobrazhenii, svyazannykh s obratnymi zadachami Shturma–Liuvillya”, Teoriya funktsii i nelineinye uravneniya v chastnykh proizvodnykh, Sbornik statei. K 70-letiyu so dnya rozhdeniya chlena-korrespondenta RAN Stanislava Ivanovicha Pokhozhaeva, Tr. MIAN, 260, MAIK, M., 2008, 227–247 | MR
[2] A. M. Savchuk, A. A. Shkalikov, “O ravnomernoi ustoichivosti v obratnykh zadachakh Shturma–Liuvillya” (to appear)
[3] R. O. Hryniv, “Uniform stability of the inverse spectral problem for Dirac operators with summable potentials” (to appear)
[4] R. O. Hryniv, “Uniform stability of the inverse spectral problem for Sturm–Liouville operators with singular potentials” (to appear)
[5] R. M. Young, An Introduction to Nonharmonic Fourier Series, Acad. Press, San Diego, CA, 2001 | MR | Zbl
[6] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR | Zbl
[7] R. E. A. C. Paley, N. Wiener, Fourier Transforms in the Complex Domain, Amer. Math. Soc. Colloq. Publ., 19, Amer. Math. Soc., Providence, RI, 1934 | MR | Zbl
[8] M. I. Kadets, “Tochnoe znachenie konstanty Peli–Vinera”, Dokl. AN SSSR, 155:6 (1964), 1253–1254 | MR | Zbl
[9] N. Levinson, Gap and Density Theorems, Amer. Math. Soc. Colloq. Publ., 29, Amer. Math. Soc., Providence, RI, 1940 | MR | Zbl
[10] R. M. Young, “On perturbing bases of complex exponentials in $L^2(-\pi,\pi)$”, Proc. Amer. Math. Soc., 53:1 (1975), 137–140 | DOI | MR | Zbl
[11] S. A. Avdonin, S. A. Ivanov, Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[12] A. M. Sedletskii, “Negarmonicheskii analiz”, Funktsionalnyi analiz, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 96, VINITI, M., 2006, 106–211 | MR | Zbl
[13] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge Math. Lib., Cambridge Univ. Press, Cambridge, 1988 | MR | Zbl
[14] X. He, H. Volkmer, “Riesz bases of solutions of Sturm–Liouville equations”, J. Fourier Anal. Appl., 7:3 (2001), 297–307 | DOI | MR | Zbl