Notes on Derivations on Algebras of Measurable Operators
Matematičeskie zametki, Tome 87 (2010) no. 4, pp. 502-513.

Voir la notice de l'article provenant de la source Math-Net.Ru

Derivations on algebras of (unbounded) operators affiliated with a von Neumann algebra $\mathscr M$ are considered. Let $\mathscr A$ be one of the algebras of measurable operators, of locally measurable operators, and of $\tau$-measurable operators. The von Neumann algebras $\mathscr M$ of type I for which any derivation on $\mathscr A$ is inner are completely described in terms of properties of central projections. It is also shown that any derivation on the algebra $LS(\mathscr M)$ of all locally measurable operators affiliated with a properly infinite von Neumann algebra $\mathscr M$ vanishes on the center $LS(\mathscr M)$.
Keywords: operator algebra, von Neumann algebra, measurable operator algebra, derivation on an operator algebra, inner derivation, $*$-algebra.
Mots-clés : bimodule
@article{MZM_2010_87_4_a2,
     author = {A. F. Ber and B. De Pagter and F. A. Sukochev},
     title = {Notes on {Derivations} on {Algebras} of {Measurable} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {502--513},
     publisher = {mathdoc},
     volume = {87},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a2/}
}
TY  - JOUR
AU  - A. F. Ber
AU  - B. De Pagter
AU  - F. A. Sukochev
TI  - Notes on Derivations on Algebras of Measurable Operators
JO  - Matematičeskie zametki
PY  - 2010
SP  - 502
EP  - 513
VL  - 87
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a2/
LA  - ru
ID  - MZM_2010_87_4_a2
ER  - 
%0 Journal Article
%A A. F. Ber
%A B. De Pagter
%A F. A. Sukochev
%T Notes on Derivations on Algebras of Measurable Operators
%J Matematičeskie zametki
%D 2010
%P 502-513
%V 87
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a2/
%G ru
%F MZM_2010_87_4_a2
A. F. Ber; B. De Pagter; F. A. Sukochev. Notes on Derivations on Algebras of Measurable Operators. Matematičeskie zametki, Tome 87 (2010) no. 4, pp. 502-513. http://geodesic.mathdoc.fr/item/MZM_2010_87_4_a2/

[1] J. Dixmier, Von Neumann Algebras, North-Holland Math. Library, 27, North-Holland Publ., Amsterdam–New York–Oxford, 1981 | MR | Zbl

[2] S. Sakai, Operator Algebras in Dynamical Systems. The Theory of Unbounded Derivations in $C^*$-Algebras, Encyclopedia Math. Appl., 41, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl

[3] I. E. Segal, “A non-commutative extension of abstract integration”, Ann. of Math. (2), 57:3 (1953), 401–457 | DOI | MR | Zbl

[4] S. Sankaran, “The $*$-algebra of unbounded operators”, J. London Math. Soc., 34 (1959), 337–344 | DOI | MR | Zbl

[5] F. J. Yeadon, “Convergence of measurable operators”, Proc. Cambridge Philos. Soc., 74 (1973), 257–268 | DOI | MR | Zbl

[6] E. Nelson, “Notes on non-commutative integration”, J. Funct. Anal., 15:2 (1974), 103–116 | DOI | MR | Zbl

[7] A. F. Ber, V. I. Chilin, F. A. Sukochev, “Non-trivial derivations on commutative regular algebras”, Extracta Math., 21:2 (2006), 107–147 | MR | Zbl

[8] S. Albeverio, Sh. A. Ayupov, K. K. Kudaybergenov, “Structure of derivations on various algebras of measurable operators for type I von Neumann algebras”, J. Funct. Anal., 256:9 (2009), 2917–2943 | MR | Zbl

[9] A. F. Ber, B. de Pagter, F. A. Sukochev, Derivations in algebras of operator-valued functions, arXiv: math.OA/0811.0902

[10] R. V. Kadison, J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, v. 2, Pure Appl. Math., 100, Academic Press, Orlando, FL, 1986 | MR | Zbl

[11] O. Bratelli, D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, v. 1, Texts Monogr. Phys., $C^*$- and $W^*$-Algebras, Algebras, Symmetry Groups, Decomposition of States, Springer-Verlag, New York, NY, 1979 | MR | Zbl