Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_87_3_a9, author = {A. M. Raigorodskii and O. I. Rubanov}, title = {Distance {Graphs} with {Large} {Chromatic} {Number} and without {Large} {Cliques}}, journal = {Matemati\v{c}eskie zametki}, pages = {417--428}, publisher = {mathdoc}, volume = {87}, number = {3}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a9/} }
TY - JOUR AU - A. M. Raigorodskii AU - O. I. Rubanov TI - Distance Graphs with Large Chromatic Number and without Large Cliques JO - Matematičeskie zametki PY - 2010 SP - 417 EP - 428 VL - 87 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a9/ LA - ru ID - MZM_2010_87_3_a9 ER -
A. M. Raigorodskii; O. I. Rubanov. Distance Graphs with Large Chromatic Number and without Large Cliques. Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 417-428. http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a9/
[1] A. M. Raigorodskii, “Problema Borsuka i khromaticheskie chisla nekotorykh metricheskikh prostranstv”, UMN, 56:1 (2001), 107–146 | MR | Zbl
[2] A. Soifer, “Khromaticheskoe chislo ploskosti: ego proshloe, nastoyaschee i buduschee”, Matem. prosveschenie, 8, MTsNMO, M., 2004, 185–221
[3] A. M. Raigorodskii, Lineino-algebraicheskii metod v kombinatorike, MTsNMO, M., 2007
[4] A. M. Raigorodskii, Khromaticheskie chisla, MTsNMO, M., 2003
[5] L. A. Székely, “Erdős on unit distances and the Szemerédi–Trotter theorems”, Paul Erdős and his Mathematics, II (Budapest, 1999), Bolyai Soc. Math. Stud., 11, János Bolyai Math. Soc., Budapest, 2002, 649–666 | MR | Zbl
[6] P. Brass, W. Moser, J. Pach, Research Problems in Discrete Geometry, Springer-Verlag, New York, NY, 2005 | MR | Zbl
[7] F. Kharari, Teoriya grafov, Mir, M., 1973 | MR | Zbl
[8] D. G. Larman, C. A. Rogers, “The realization of distances within sets in Euclidean space”, Mathematika, 19 (1972), 1–24 | MR | Zbl
[9] N. G. de Bruijn, P. Erdős, “A colour problem for infinite graphs and a problem in the theory of relations”, Nederl. Akad. Wetensch. Proc. Ser. A, 54:5 (1951), 371–373 | MR | Zbl
[10] O. Nechushtan, “On the space chromatic number”, Discrete Math., 256:1–2 (2002), 499–507 | DOI | MR | Zbl
[11] L. L. Ivanov, “Otsenka khromaticheskogo chisla prostranstva $\mathbb R^4$”, UMN, 61:5 (2006), 181–182 | MR | Zbl
[12] A. M. Raigorodskii, “O khromaticheskom chisle prostranstva”, UMN, 55:2 (2000), 147–148 | MR | Zbl
[13] “Unsolved problems”, Congr. Numer., 15 (1976), 678–691 | MR
[14] N. Wormald, “A 4-chromatic graph with a special plane drawing”, J. Austral. Math. Soc. Ser. A, 28:1 (1979), 1–8 | DOI | MR | Zbl
[15] R. Hochberg, P. O'Donnel, “Some 4-chromatic unit-distance graphs without small cycles”, Geombinatorics, 5:4 (1996), 137–141 | MR | Zbl
[16] O. I. Rubanov, “Khromaticheskie chisla trekhmernykh grafov rasstoyanii, ne soderzhaschikh tetraedrov”, Matem. zametki, 82:5 (2007), 797–800 | MR | Zbl
[17] K. Prakhar, Raspredelenie prostykh chisel, Mir, M., 1967 | MR | Zbl
[18] N. Alon, Dzh. Spenser, Veroyatnostnyi metod, Binom. Laboratoriya znanii, M., 2007 | MR | Zbl
[19] A. M. Raigorodskii, Veroyatnost i algebra v kombinatorike, MTsNMO, Moskva, 2008