Degree of Discrete Generation of Compact Sets
Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 396-401
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper, under the continuum hypothesis, we construct an example of a discretely generated compact set $X$ whose square is not discretely generated. For each compact set $X$, there is an ordinally valued characteristic $\operatorname{idc}(X)$, which is the least number of iterations of the $d$-closure generating, as a result, the closure of any original subset $X$. We prove that if $\chi(X)\le\omega_\alpha$, then $\operatorname{idc}(X)\le\alpha+1$.
Keywords:
discretely generated compact set, compact Hausdorff space, $d$-closure, compact extension, one-point compactification, continuum hypothesis.
@article{MZM_2010_87_3_a6,
author = {A. V. Ivanov and E. V. Osipov},
title = {Degree of {Discrete} {Generation} of {Compact} {Sets}},
journal = {Matemati\v{c}eskie zametki},
pages = {396--401},
publisher = {mathdoc},
volume = {87},
number = {3},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a6/}
}
A. V. Ivanov; E. V. Osipov. Degree of Discrete Generation of Compact Sets. Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 396-401. http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a6/