Farthest Points and Strong Convexity of Sets
Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 382-395

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the existence and uniqueness of the farthest point of a given set $A$ in Banach space $E$ from a given point $x$ in the space $E$. It is assumed that $A$ is a convex, closed, and bounded set in a uniformly convex Banach space $E$ with Fréchet differentiable norm. It is shown that, for any point $x$ sufficiently far from the set $A$, the point of the set $A$ which is farthest from $x$ exists, is unique, and depends continuously on the point $x$ if and only if the set $A$ in the Minkowski sum with some other set yields a ball. Moreover, the farthest (from $x$) point of the set $A$ also depends continuously on the set $A$ in the sense of the Hausdorff metric. If the norm ball of the space $E$ is a generating set, these conditions on the set $A$ are equivalent to its strong convexity.
Keywords: optimization problem, farthest points, strong convexity of a set, Banach space, Fréchet differentiable norm, Minkowski sum, Hausdorff metric
Mots-clés : metric antiprojection, antisun.
@article{MZM_2010_87_3_a5,
     author = {G. E. Ivanov},
     title = {Farthest {Points} and {Strong} {Convexity} of {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {382--395},
     publisher = {mathdoc},
     volume = {87},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a5/}
}
TY  - JOUR
AU  - G. E. Ivanov
TI  - Farthest Points and Strong Convexity of Sets
JO  - Matematičeskie zametki
PY  - 2010
SP  - 382
EP  - 395
VL  - 87
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a5/
LA  - ru
ID  - MZM_2010_87_3_a5
ER  - 
%0 Journal Article
%A G. E. Ivanov
%T Farthest Points and Strong Convexity of Sets
%J Matematičeskie zametki
%D 2010
%P 382-395
%V 87
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a5/
%G ru
%F MZM_2010_87_3_a5
G. E. Ivanov. Farthest Points and Strong Convexity of Sets. Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 382-395. http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a5/