Farthest Points and Strong Convexity of Sets
Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 382-395.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the existence and uniqueness of the farthest point of a given set $A$ in Banach space $E$ from a given point $x$ in the space $E$. It is assumed that $A$ is a convex, closed, and bounded set in a uniformly convex Banach space $E$ with Fréchet differentiable norm. It is shown that, for any point $x$ sufficiently far from the set $A$, the point of the set $A$ which is farthest from $x$ exists, is unique, and depends continuously on the point $x$ if and only if the set $A$ in the Minkowski sum with some other set yields a ball. Moreover, the farthest (from $x$) point of the set $A$ also depends continuously on the set $A$ in the sense of the Hausdorff metric. If the norm ball of the space $E$ is a generating set, these conditions on the set $A$ are equivalent to its strong convexity.
Keywords: optimization problem, farthest points, strong convexity of a set, Banach space, Fréchet differentiable norm, Minkowski sum, Hausdorff metric
Mots-clés : metric antiprojection, antisun.
@article{MZM_2010_87_3_a5,
     author = {G. E. Ivanov},
     title = {Farthest {Points} and {Strong} {Convexity} of {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {382--395},
     publisher = {mathdoc},
     volume = {87},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a5/}
}
TY  - JOUR
AU  - G. E. Ivanov
TI  - Farthest Points and Strong Convexity of Sets
JO  - Matematičeskie zametki
PY  - 2010
SP  - 382
EP  - 395
VL  - 87
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a5/
LA  - ru
ID  - MZM_2010_87_3_a5
ER  - 
%0 Journal Article
%A G. E. Ivanov
%T Farthest Points and Strong Convexity of Sets
%J Matematičeskie zametki
%D 2010
%P 382-395
%V 87
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a5/
%G ru
%F MZM_2010_87_3_a5
G. E. Ivanov. Farthest Points and Strong Convexity of Sets. Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 382-395. http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a5/

[1] E. Asplund, “Farthest points in reflexive locally uniformly rotund Banach spaces”, Israel J. Math., 4:4 (1966), 213–216 | DOI | MR | Zbl

[2] M. Edelstein, “Fathest points of sets in uniformly convex Banach spaces”, Israel J. Math., 4:3 (1966), 171–176 | DOI | MR | Zbl

[3] N. V. Zhivkov, “Metric projections and antiprojections in strictly convex normed spaces”, C. R. Acad. Bulgare Sci., 31:4 (1978), 369–372 | MR | Zbl

[4] S. Fitzpatrick, “Metric projections and the differentiability of distance functions”, Bull. Austral. Math. Soc., 22:2 (1980), 291–312 | DOI | MR | Zbl

[5] M. V. Balashov, G. E. Ivanov, “Ob udalennykh tochkakh mnozhestv”, Matem. zametki, 80:2 (2006), 163–170 | MR | Zbl

[6] N. V. Efimov, S. B. Stechkin, “Nekotorye svoistva chebyshevskikh mnozhestv”, Dokl. AN SSSR, 118:1 (1958), 17–19 | MR | Zbl

[7] L. P. Vlasov, “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, UMN, 28:6 (1973), 3–66 | MR | Zbl

[8] V. S. Balaganskii, L. P. Vlasov, “Problema vypuklosti chebyshevskikh mnozhestv”, UMN, 51:6 (1996), 125–188 | MR | Zbl

[9] J. M. Borwein, “Proximality and Chebyshev sets”, Optim. Lett., 1:1 (2007), 21–32 | DOI | MR | Zbl

[10] A. R. Alimov, M. I. Karlov, “Mnozhestva s vneshnim chebyshevskim sloem”, Matem. zametki, 69:2 (2001), 303–307 | MR | Zbl

[11] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, Matematika. Prikladnaya matematika, Fizmatlit, M., 2007 | Zbl

[12] F. H. Clarke, R. J. Stern, P. R. Wolenski, “Proximal smoothness and the lower-$C^2$ property”, J. Convex Anal., 2:1–2 (1995), 117–144 | MR | Zbl

[13] F. Bernard, L. Thibault, N. Zlateva, “Characterizations of prox-regular sets in uniformly convex Banach spaces”, J. Convex Anal., 13:3–4 (2006), 525–559 | MR | Zbl

[14] Dzh. Distel, Geometriya banakhovykh prostranstv. Izbrannye glavy, Vischa shkola, Kiev, 1980 | MR | Zbl

[15] S. V. Konyagin, “Ob approksimativnykh svoistvakh zamknutykh mnozhestv v banakhovykh prostranstvakh i kharakterizatsii silno vypuklykh prostranstv”, Dokl. AN SSSR, 251:2 (1980), 276–280 | MR | Zbl

[16] S. B. Stechkin, “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, S. B. Stechkin, Izbrannye trudy. Matematika, Fizmatlit, M., 1998, 270–281 | MR | Zbl

[17] M. V. Balashov, G. E. Ivanov, “Slabo vypuklye i proksimalno gladkie mnozhestva v banakhovykh prostranstvakh”, Izv. RAN. Ser. matem., 73:3 (2009), 23–66 | MR | Zbl