Zeta Functions in Triangulated Categories
Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 369-381.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the 2-out-of-3 property for the rationality of motivic zeta function in distinguished triangles in Voevodsky's category $\mathscr{DM}$. As an application, we show the rationality of motivic zeta functions for all varieties whose motives are in the thick triangulated monoidal subcategory generated by motives of quasi-projective curves in $\mathscr{DM}$. Together with a result due to P. O'Sullivan, this also gives an example of a variety whose motive is not finite-dimensional while the motivic zeta function is rational.
Keywords: zeta function, motivic measure, finite-dimensional motives, triangulated category of motives over a field, homotopy category of motivic symmetric spectra, Grothendieck group of a triangulated category, $\lambda$-ring, rationality.
@article{MZM_2010_87_3_a4,
     author = {V. I. Guletskii},
     title = {Zeta {Functions} in {Triangulated} {Categories}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {369--381},
     publisher = {mathdoc},
     volume = {87},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a4/}
}
TY  - JOUR
AU  - V. I. Guletskii
TI  - Zeta Functions in Triangulated Categories
JO  - Matematičeskie zametki
PY  - 2010
SP  - 369
EP  - 381
VL  - 87
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a4/
LA  - ru
ID  - MZM_2010_87_3_a4
ER  - 
%0 Journal Article
%A V. I. Guletskii
%T Zeta Functions in Triangulated Categories
%J Matematičeskie zametki
%D 2010
%P 369-381
%V 87
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a4/
%G ru
%F MZM_2010_87_3_a4
V. I. Guletskii. Zeta Functions in Triangulated Categories. Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 369-381. http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a4/

[1] Y. André, “Motifs de dimension finie (d'après S.-I. Kimura, P. O'Sullivan, ...)”, Séminaire Bourbaki, Vol. 2003/2004, Astérisque, 299, Soc. Math. France, Paris, 2005, 115–145, Exp. No. 929 | MR | Zbl

[2] Y. André, Une introduction aux motifs (motifs purs, motifs mixtes, periodes), Panor. Synthèses, 17, Soc. Math. France, Paris, 2004 | MR | Zbl

[3] S.-I. Kimura, “Chow groups are finite dimensional, in some sense”, Math. Ann., 331:1 (2005), 173–201 | DOI | MR | Zbl

[4] F. Heinloth, “A note on functional equations for zeta functions with values in Chow motives”, Ann. Inst. Fourier (Grenoble), 57:6 (2007), 1927–1945 | MR | Zbl

[5] M. Kapranov, The Elliptic Curve in the S-Duality Theory and Eisenstein Series for Kac–Moody Groups, arXiv: math.AG/0001005v2

[6] B. Dwork, “On the rationality of the zeta function of an algebraic variety”, Amer. J. Math., 82:3 (1960), 631–648 | DOI | MR | Zbl

[7] V. Voevodsky, “Triangulated categories of motives over a field”, Cycles, Transfers, and Motivic Homology Theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 188–238 | MR | Zbl

[8] M. Larsen, V. A. Lunts, “Rationality criteria for motivic zeta functions”, Compos. Math., 140:6 (2004), 1537–1560 | MR | Zbl

[9] A. J. Scholl, “Classical motives”, Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., 55, Part 1, Amer. Math. Soc., Providence, RI, 1994, 163–187 | MR | Zbl

[10] H. Gillet, C. Soulé, “Descent, motives and $K$-theory”, J. Reine Angew. Math., 478 (1996), 127–176 | MR | Zbl

[11] S. del Baño Rollin, V. Navarro Aznar, “On the motive of a quotient variety”, Collect. Math., 49:2–3 (1998), 203–226 | MR | Zbl

[12] M. F. Atiyah, D. O. Tall, “Group representations, $\lambda$-rings and the $J$-homomorphism”, Topology, 8:3 (1969), 253–297 | DOI | MR | Zbl

[13] D. Knutson, $\lambda$-Rings and the Representation Theory of the Symmetric Group, Lecture Notes in Math., 308, Springer-Verlag, Berlin–New York, 1973 | DOI | MR | Zbl

[14] J. Denef, F. Loeser, “Geometry on arc spaces of algebraic varieties”, European Congress of Mathematics, Vol. I (Barcelona, 2000), Progr. Math., 201, Birkhäuser, Basel, 2001, 327–348 | MR | Zbl

[15] A. Neeman, Triangulated Categories, Ann. of Math. Stud., 148, Princeton Univ. Press, Princeton, NJ, 2001 | MR | Zbl

[16] M. Hovey, Model Categories, Math. Surveys Monogr., 63, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl

[17] J. P. C. Greenlees, Rational $S^1$-equivariant stable homotopy theory, Mem. Amer. Math. Soc., 138, 661, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl

[18] J. F. Jardine, “Motivic symmetric spectra”, Doc. Math., 5 (2000), 445–553 | MR | Zbl

[19] V. Voevodsky, “$\mathbb A^1$-homotopy theory”, Doc. Math., Extra Vol. \bf I (1998), 579–604 | MR | Zbl

[20] F. Morel, “On the motivic $\pi_0$ of the sphere spectrum”, Axiomatic, Enriched and Motivic Homotopy Theory, NATO Sci. Ser. II Math. Phys. Chem., 131, Kluwer Acad. Publ., Dordrecht, 2004, 219–260 | MR | Zbl

[21] V. Guletskiĭ, “Finite-dimensional objects in distinguished triangles”, J. Number Theory, 119:1 (2006), 99–127 | DOI | MR | Zbl

[22] C. Mazza, “Schur functors and motives”, $K$-Theory, 33:2 (2004), 89–106 | DOI | MR | Zbl

[23] A. M. Shermenev, “O motive giperpoverkhnostei Veilya”, Matem. zametki, 12:5 (1972), 555–560 | MR | Zbl

[24] W. Fulton, Intersection Theory, Ergeb. Math. Grenzgeb. (3), 2, Springer-Verlag, Berlin, 1984 | MR | Zbl

[25] M. Bondarko, Differential Graded Motives: Weight Complex, Weight Filtrations and Spectral Sequences for Realizations; Voevodsky vs. Hanamura, arXiv: math.AG/0601713v8