The Semiclassical Maupertuis--Jacobi Correspondence and Applications to Linear Water Waves Theory
Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 458-463.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Maslov canonical operator, complete integrability
Mots-clés : Liouville tori, KAM tori, Maupertuis–Jacobi correspondence.
@article{MZM_2010_87_3_a14,
     author = {S. Yu. Dobrokhotov and M. Rouleux},
     title = {The {Semiclassical} {Maupertuis--Jacobi} {Correspondence} and {Applications} to {Linear} {Water} {Waves} {Theory}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {458--463},
     publisher = {mathdoc},
     volume = {87},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a14/}
}
TY  - JOUR
AU  - S. Yu. Dobrokhotov
AU  - M. Rouleux
TI  - The Semiclassical Maupertuis--Jacobi Correspondence and Applications to Linear Water Waves Theory
JO  - Matematičeskie zametki
PY  - 2010
SP  - 458
EP  - 463
VL  - 87
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a14/
LA  - ru
ID  - MZM_2010_87_3_a14
ER  - 
%0 Journal Article
%A S. Yu. Dobrokhotov
%A M. Rouleux
%T The Semiclassical Maupertuis--Jacobi Correspondence and Applications to Linear Water Waves Theory
%J Matematičeskie zametki
%D 2010
%P 458-463
%V 87
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a14/
%G ru
%F MZM_2010_87_3_a14
S. Yu. Dobrokhotov; M. Rouleux. The Semiclassical Maupertuis--Jacobi Correspondence and Applications to Linear Water Waves Theory. Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 458-463. http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a14/

[1] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl

[2] S. Yu. Dobrokhotov, P. N. Zhevandrov, Russ. J. Math. Phys., 10:1 (2003), 1–31 | MR | Zbl

[3] V. Ivrii, Microlocal Analysis and Precise Spectral Asymptotics, Springer Monogr. Math., Springer-Verlag, Berlin, 1998 | MR | Zbl

[4] V. F. Lazutkin, KAM Theory and Semi-Classical Approximation to Eigenfunctions, Ergeb. Math. Grenzgeb. (3), 24, Springer-Verlag, Berlin, 1993 | MR | Zbl

[5] Y. Colin de Verdiére, Invent. Math., 43 (1977), 15–52 | DOI | MR | Zbl

[6] A. D. Krakhnov, UMN, 31:3 (1976), 217–218 | MR | Zbl

[7] V. V. Belov, S. Yu. Dobrokhotov, V. A. Maksimov, TMF, 135:3 (2003), 378–408 | MR

[8] S. Bates, A. Weinstein, Lectures on the Geometry of Quantization, Berkeley Math. Lect. Notes, 8, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl

[9] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR | Zbl

[10] R. Abraham, J. E. Marsden, Foundations of Mechanics, Benjamin/Cummings Publ., Reading, MA, 1978 | MR | Zbl

[11] A. V. Tsiganov, J. Nonlinear Math. Phys., 8:1 (2001), 157–182 | DOI | MR | Zbl

[12] B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern Geometry – Methods and Applications. Vol. 1. The Geometry of Surfaces, Transformation Groups, and Fields, Grad. Texts in Math., 93, Springer-Verlag, New York, NY, 1984 | MR | Zbl

[13] V. S. Matveev, Matem. zametki, 64:3 (1998), 414–422 | MR | Zbl