Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_87_3_a1, author = {Yu. P. Bibilo}, title = {Isomonodromic {Confluence} of {Singular} {Points}}, journal = {Matemati\v{c}eskie zametki}, pages = {330--336}, publisher = {mathdoc}, volume = {87}, number = {3}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a1/} }
Yu. P. Bibilo. Isomonodromic Confluence of Singular Points. Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 330-336. http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a1/
[1] V. I. Arnold, Zadachi Arnolda, FAZIS, M., 2000 | MR | Zbl
[2] A. A. Bolibrukh, “Ob izomonodromnykh sliyaniyakh fuksovykh osobennostei”, Lokalnye i globalnye zadachi teorii osobennostei, Sbornik statei. K 60-letiyu so dnya rozhdeniya akademika Vladimira Igorevicha Arnolda, Tr. MIAN, 221, Nauka, M., 1998, 127–142 | MR | Zbl
[3] A. A. Bolibrukh, “Regulyarnye osobye tochki kak izomonodromnye sliyaniya fuksovykh”, UMN, 56:4 (2001), 135–136 | MR | Zbl
[4] M. Jimbo, T. Miwa, K. Ueno, “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and $\tau $-function”, Phys. D, 2:2 (1981), 306–352 | DOI | MR
[5] A. A. Bolibrukh, Obratnye zadachi monodromii v analiticheskoi teorii differentsialnykh uravnenii, Sovremennye lektsionnye kursy, MTsNMO, M., 2009
[6] B. Vazov, Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968 | MR | Zbl
[7] W. Balser, W. B. Jucart, D. A. Lutz, “A general theory of invariants for meromorphic differential equations. I. Formal invariants”, Funkcial. Ekvac., 22:2 (1979), 197–221 | MR | Zbl
[8] A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, A. S. Fokas, Transtsendenty Penleve. Metod zadachi Rimana, M.–Izhevsk, IKI, 2005