Isomonodromic Confluence of Singular Points
Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 330-336.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of confluence of singular points under isomonodromic deformations of linear systems. We prove that a system with irregular singular points is a result of isomonodromic confluence of singular points with minimal Poincaré ranks, i.e., of singular points whose Poincaré rank does not decrease under gauge transformations.
Mots-clés : isomonodromic deformation, monodromy matrix
Keywords: linear differential equation, confluence of singular points, Poincaré rank, gauge transformation, Fuchsian system.
@article{MZM_2010_87_3_a1,
     author = {Yu. P. Bibilo},
     title = {Isomonodromic {Confluence} of {Singular} {Points}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {330--336},
     publisher = {mathdoc},
     volume = {87},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a1/}
}
TY  - JOUR
AU  - Yu. P. Bibilo
TI  - Isomonodromic Confluence of Singular Points
JO  - Matematičeskie zametki
PY  - 2010
SP  - 330
EP  - 336
VL  - 87
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a1/
LA  - ru
ID  - MZM_2010_87_3_a1
ER  - 
%0 Journal Article
%A Yu. P. Bibilo
%T Isomonodromic Confluence of Singular Points
%J Matematičeskie zametki
%D 2010
%P 330-336
%V 87
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a1/
%G ru
%F MZM_2010_87_3_a1
Yu. P. Bibilo. Isomonodromic Confluence of Singular Points. Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 330-336. http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a1/

[1] V. I. Arnold, Zadachi Arnolda, FAZIS, M., 2000 | MR | Zbl

[2] A. A. Bolibrukh, “Ob izomonodromnykh sliyaniyakh fuksovykh osobennostei”, Lokalnye i globalnye zadachi teorii osobennostei, Sbornik statei. K 60-letiyu so dnya rozhdeniya akademika Vladimira Igorevicha Arnolda, Tr. MIAN, 221, Nauka, M., 1998, 127–142 | MR | Zbl

[3] A. A. Bolibrukh, “Regulyarnye osobye tochki kak izomonodromnye sliyaniya fuksovykh”, UMN, 56:4 (2001), 135–136 | MR | Zbl

[4] M. Jimbo, T. Miwa, K. Ueno, “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and $\tau $-function”, Phys. D, 2:2 (1981), 306–352 | DOI | MR

[5] A. A. Bolibrukh, Obratnye zadachi monodromii v analiticheskoi teorii differentsialnykh uravnenii, Sovremennye lektsionnye kursy, MTsNMO, M., 2009

[6] B. Vazov, Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968 | MR | Zbl

[7] W. Balser, W. B. Jucart, D. A. Lutz, “A general theory of invariants for meromorphic differential equations. I. Formal invariants”, Funkcial. Ekvac., 22:2 (1979), 197–221 | MR | Zbl

[8] A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, A. S. Fokas, Transtsendenty Penleve. Metod zadachi Rimana, M.–Izhevsk, IKI, 2005