On Symmetry Groups of Quasicrystals
Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 323-329.

Voir la notice de l'article provenant de la source Math-Net.Ru

A relationship between two types of symmetry groups of quasicrystals in the cut-and-project model is studied.
Keywords: quasicrystal, symmetry group, proper symmetry group, translation subgroup, cut-and-project method.
Mots-clés : point group
@article{MZM_2010_87_3_a0,
     author = {V. A. Artamonov and S. Sanchez},
     title = {On {Symmetry} {Groups} of {Quasicrystals}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--329},
     publisher = {mathdoc},
     volume = {87},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a0/}
}
TY  - JOUR
AU  - V. A. Artamonov
AU  - S. Sanchez
TI  - On Symmetry Groups of Quasicrystals
JO  - Matematičeskie zametki
PY  - 2010
SP  - 323
EP  - 329
VL  - 87
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a0/
LA  - ru
ID  - MZM_2010_87_3_a0
ER  - 
%0 Journal Article
%A V. A. Artamonov
%A S. Sanchez
%T On Symmetry Groups of Quasicrystals
%J Matematičeskie zametki
%D 2010
%P 323-329
%V 87
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a0/
%G ru
%F MZM_2010_87_3_a0
V. A. Artamonov; S. Sanchez. On Symmetry Groups of Quasicrystals. Matematičeskie zametki, Tome 87 (2010) no. 3, pp. 323-329. http://geodesic.mathdoc.fr/item/MZM_2010_87_3_a0/

[1] G. Aragon, J. L. Aragon, F. Davila, A. Gomez, M. A. Rodriguez, “Modern geometric calculations in crystallography”, Geometric Algebra with Applications in Science and Engineering (Ixtapa-Zihuatanejo, 1999), Birkhäuser Boston, Boston, MA, 2001, 371–386 | MR

[2] J. Hermisson, Ch. Richard, M. Baake, “A guide to the symmetry structure of quasiperiodic tiling classes”, J. Physique I, 7:8 (1997), 1003–1018 | DOI | MR | Zbl

[3] C. Janot, Quasicrystals. A Primer, Clarendon Press, Oxford, 1994 | Zbl

[4] Le Tkhang Ty Kuok, S. A. Piunikhin, V. A. Sadov, “Geometriya kvazikristallov”, UMN, 48:1 (1993), 41–102 | MR | Zbl

[5] R. V. Moody, “Model sets: a survey”, From Quasicrystals to More Complex Systems (Les Houches, 1998), Springer-Verlag, Berlin, 145–166

[6] P. A. B. Pleasants, “Designer quasicrystals: cut-and-project sets with pre-assigned properties”, Directions in Mathematical Quasicrystals, CRM Monogr. Ser., 13, Amer. Math. Soc., Providence, RI, 95–141 | MR | Zbl

[7] B. N. Fisher, D. A. Rabson, “Applications of group cohomology to the classification of quasicrystal symmetries”, J. Phys. A, 36:40 (2003), 10195–10214 | DOI | MR | Zbl

[8] B. Loridant, Jun Luo, J. M. Thuswaldner, “Topology of crystallographic tiles”, Geom. Dedicata, 128 (2007), 113–144 | DOI | MR | Zbl

[9] B. A. Artamonov, Yu. L. Slovokhotov, Gruppy i ikh prilozheniya v fizike, khimii i kristallografii, Izd. tsentr “Akademiya”, M., 2005

[10] A. Janner, “Crystallographic symmetries of quasicrystals”, Phase Trans., 43:1–4 (1993), 35–47 | DOI

[11] V. A. Artamonov, S. Sanchez, “Remarks on symmetries of 2Dquasicrystals”, Proceedings of the Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE-2006) (Spain, September 21–25, 2006), Univ. Rey Juan Carlos, Madrid, 2006, 59–70

[12] E. B. Vinberg, Kurs algebry, Faktorial Press, M., 2002 | MR | Zbl

[13] H. Abels, “Properly discontinuous groups of affine transformations: a survey”, Geom. Dedicata, 87:1–3 (2001), 309–333 | DOI | MR | Zbl

[14] D. Fried, W. M. Goldman, “Three-dimensional affine crystallographic groups”, Adv. in Math., 47:1 (1983), 1–49 | DOI | MR | Zbl