The Formation of Finite Groups with a Supersolvable $\pi$-Hall Subgroup
Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 280-286.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group having a $\pi$-subgroup $H$ such that $|G:H|$ is not divisible by the numbers in $\pi$. In this case, the subgroup $H$ is referred to as a $\pi$-Hall subgroup, and the group $G$ by itself is referred to as a $E_\pi$-group. If, moreover, the group $H$ is supersolvable, then $G$ is referred to as an $E_\pi^u$-group. It is proved in the paper that the class of all $E_\pi^u$-groups is a solvably saturated formation, and the proof is carried out without using the classification of finite groups.
Keywords: Hall subgroup, classification of finite groups, saturated formation, Frattini subgroup, monolithic group, subdirect product.
Mots-clés : supersolvable group, formation
@article{MZM_2010_87_2_a9,
     author = {Yi Xiaolan and L. A. Shemetkov},
     title = {The {Formation} of {Finite} {Groups} with a {Supersolvable} $\pi${-Hall} {Subgroup}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {280--286},
     publisher = {mathdoc},
     volume = {87},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a9/}
}
TY  - JOUR
AU  - Yi Xiaolan
AU  - L. A. Shemetkov
TI  - The Formation of Finite Groups with a Supersolvable $\pi$-Hall Subgroup
JO  - Matematičeskie zametki
PY  - 2010
SP  - 280
EP  - 286
VL  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a9/
LA  - ru
ID  - MZM_2010_87_2_a9
ER  - 
%0 Journal Article
%A Yi Xiaolan
%A L. A. Shemetkov
%T The Formation of Finite Groups with a Supersolvable $\pi$-Hall Subgroup
%J Matematičeskie zametki
%D 2010
%P 280-286
%V 87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a9/
%G ru
%F MZM_2010_87_2_a9
Yi Xiaolan; L. A. Shemetkov. The Formation of Finite Groups with a Supersolvable $\pi$-Hall Subgroup. Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 280-286. http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a9/

[1] P. Hall, “Theorems like Sylow's”, Proc. London Math. Soc. (3), 6 (1956), 286–304 | DOI | MR | Zbl

[2] W. Gaschütz, “Zur Theorie der endlichen auflösbaren Gruppen”, Math. Z., 80 (1963), 300–305 | MR | Zbl

[3] L. A. Shemetkov, A. F. Vasilev, “Nelokalnye formatsii konechnykh grupp”, Dokl. NAN Belarusi, 39:4 (1995), 5–8 | MR

[4] V. A. Vedernikov, “Podpryamye proizvedeniya konechnykh grupp s khollovymi $\pi$-podgruppami”, Matem. zametki, 59:2 (1996), 311–314 | MR | Zbl

[5] L. A. Shemetkov, Formatsii konechnykh grupp, Sovremennaya algebra, Nauka, M., 1978 | MR | Zbl

[6] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, 11-e izd., ed. V. D. Mazurov, In-t matem. SO AN SSSR, Novosibirsk, 1990 | MR | Zbl

[7] K. Doerk, T. Hawkes, Finite Soluble Groups, de Gruyter Exp. Math., 4, Walter de Gruyter, Berlin, 1992 | MR | Zbl

[8] L. A. Shemetkov, “On partially saturated formations and residuals of finite groups”, Comm. Algebra, 29:9 (2001), 4125–4137 | DOI | MR | Zbl