Convergence Parameter Associated with a Markov Chain and a Family of Functions
Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 294-304.

Voir la notice de l'article provenant de la source Math-Net.Ru

The proposed definition of convergence parameter $R(W)$ corresponding to a Markov chain $X$ with a measurable state space $(E,\mathscr B)$ and any nonempty set $W$ of bounded below measurable functions $f\colon E\to\mathbb R$ is wider than the well-known definition of convergence parameter $R$ in the sense of Tweedie or Nummelin. Very often, $R(W)\infty$, and there exists a set playing the role of the absorbing set in Nummelin's definition of $R$. Special attention is paid to the case in which $E$ is locally compact, $X$ is a Feller chain on $E$, and $W$ coincides with the family $\mathscr C_0^+$ of all compactly supported continuous functions $f\ge 0$ ($f\not\equiv 0$). In particular, certain conditions for $R(\mathscr C_0^+)^{-1}$ to coincide with the norm of an appropriate modification of the chain transition operator are found.
Keywords: convergence parameter, absorbing set, locally compact set, random walk, irreducible chains, measurable state space.
Mots-clés : Markov chain, Feller chain
@article{MZM_2010_87_2_a11,
     author = {M. G. Shur},
     title = {Convergence {Parameter} {Associated} with a {Markov} {Chain} and a {Family} of {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {294--304},
     publisher = {mathdoc},
     volume = {87},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a11/}
}
TY  - JOUR
AU  - M. G. Shur
TI  - Convergence Parameter Associated with a Markov Chain and a Family of Functions
JO  - Matematičeskie zametki
PY  - 2010
SP  - 294
EP  - 304
VL  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a11/
LA  - ru
ID  - MZM_2010_87_2_a11
ER  - 
%0 Journal Article
%A M. G. Shur
%T Convergence Parameter Associated with a Markov Chain and a Family of Functions
%J Matematičeskie zametki
%D 2010
%P 294-304
%V 87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a11/
%G ru
%F MZM_2010_87_2_a11
M. G. Shur. Convergence Parameter Associated with a Markov Chain and a Family of Functions. Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 294-304. http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a11/

[1] D. Vere-Jones, “Geometric ergodicity in denumerable Markov chains”, Quart. J. Math. Oxford Ser. (2), 13:1 (1962), 7–28 | DOI | MR | Zbl

[2] R. L. Tweedie, “$R$-theory for Markov chains on a general state space. I. Solidarity properties and $R$-recurrent chains”, Ann. Probab., 2:5 (1974), 840–864 | DOI | MR | Zbl

[3] E. Nummelin, General Irreducible Markov Chains and Non-Negative Operators, Cambridge Tracts in Math., 83, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl

[4] V. M. Shurenkov, Ergodicheskie protsessy Markova, Teoriya veroyatnostei i matematicheskaya statistika, 41, Nauka, M., 1989 | MR | Zbl

[5] W. Woess, “Random walks on infinite graphs and groups – a survey on selected topics”, Bull. London Math. Soc., 26:1 (1994), 1–60 | DOI | MR | Zbl

[6] M. G. Shur, “Asimptoticheskie svoistva stepenei polozhitelnykh operatorov. I”, TVP, 29:4 (1984), 692–702 | MR | Zbl

[7] M. G. Shur, “Ob uslovii Lina v silnykh predelnykh teoremakh dlya otnoshenii”, Matem. zametki, 75:6 (2004), 927–940 | MR | Zbl

[8] A. L. T. Paterson, Amenability, Math. Surveys Monogr., 29, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl

[9] S. Orey, Lecture Notes on Limit Theorems for Markov Chain Transition Probabilities, Van Nostrand Reinhold Math. Stud., 34, Van Nostrand Reinhold Co., London–New York, 1971 | MR | Zbl

[10] D. Revyuz, Tsepi Markova, RFFI, M., 1997 | MR | Zbl

[11] A. V. Skorokhod, “Topologicheski vozvratnye tsepi Markova. Ergodicheskie svoistva”, TVP, 31:4 (1986), 641–650 | MR | Zbl

[12] E. Khyuitt, K. Ross, Abstraktnyi garmonicheskii analiz. T. 1. Struktura topologicheskikh grupp. Teoriya integrirovaniya. Predstavleniya grupp, Nauka, M., 1975 | MR | Zbl

[13] K. Partasarati, Vvedenie v teoriyu veroyatnostei i teoriyu mery, Mir, M., 1983 | MR | Zbl

[14] M. G. Shur, “Predelnye teoremy dlya otnoshenii, assotsiirovannykh s samosopryazhennymi operatorami i simmetrichnymi tsepyami Markova”, TVP, 45:2 (2000), 268–288 | MR | Zbl

[15] K. Iosida, Funktsionalnyi analiz, Mir, M., 1967 | MR | Zbl

[16] D. B. Pollard, R. L. Tweedie, “$R$-theory for Markov chains on a topological state space. II”, Z. Wahrsch. Verw. Gebiete, 34:4 (1976), 269–278 | DOI | MR | Zbl

[17] R. A. Aleksandryan, E. A. Mirzakhanyan, Obschaya topologiya. Uchebnoe posobie dlya vuzov, Vysshaya shkola, M., 1979 | Zbl

[18] M. G. Shur, “K teoreme ob asimptoticheskoi ravnoraspredelennosti svertochnykh stepenei simmetrichnykh mer na unimodulyarnoi gruppe”, Matem. zametki, 60:1 (1996), 120–126 | MR | Zbl