Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_87_2_a11, author = {M. G. Shur}, title = {Convergence {Parameter} {Associated} with a {Markov} {Chain} and a {Family} of {Functions}}, journal = {Matemati\v{c}eskie zametki}, pages = {294--304}, publisher = {mathdoc}, volume = {87}, number = {2}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a11/} }
M. G. Shur. Convergence Parameter Associated with a Markov Chain and a Family of Functions. Matematičeskie zametki, Tome 87 (2010) no. 2, pp. 294-304. http://geodesic.mathdoc.fr/item/MZM_2010_87_2_a11/
[1] D. Vere-Jones, “Geometric ergodicity in denumerable Markov chains”, Quart. J. Math. Oxford Ser. (2), 13:1 (1962), 7–28 | DOI | MR | Zbl
[2] R. L. Tweedie, “$R$-theory for Markov chains on a general state space. I. Solidarity properties and $R$-recurrent chains”, Ann. Probab., 2:5 (1974), 840–864 | DOI | MR | Zbl
[3] E. Nummelin, General Irreducible Markov Chains and Non-Negative Operators, Cambridge Tracts in Math., 83, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl
[4] V. M. Shurenkov, Ergodicheskie protsessy Markova, Teoriya veroyatnostei i matematicheskaya statistika, 41, Nauka, M., 1989 | MR | Zbl
[5] W. Woess, “Random walks on infinite graphs and groups – a survey on selected topics”, Bull. London Math. Soc., 26:1 (1994), 1–60 | DOI | MR | Zbl
[6] M. G. Shur, “Asimptoticheskie svoistva stepenei polozhitelnykh operatorov. I”, TVP, 29:4 (1984), 692–702 | MR | Zbl
[7] M. G. Shur, “Ob uslovii Lina v silnykh predelnykh teoremakh dlya otnoshenii”, Matem. zametki, 75:6 (2004), 927–940 | MR | Zbl
[8] A. L. T. Paterson, Amenability, Math. Surveys Monogr., 29, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl
[9] S. Orey, Lecture Notes on Limit Theorems for Markov Chain Transition Probabilities, Van Nostrand Reinhold Math. Stud., 34, Van Nostrand Reinhold Co., London–New York, 1971 | MR | Zbl
[10] D. Revyuz, Tsepi Markova, RFFI, M., 1997 | MR | Zbl
[11] A. V. Skorokhod, “Topologicheski vozvratnye tsepi Markova. Ergodicheskie svoistva”, TVP, 31:4 (1986), 641–650 | MR | Zbl
[12] E. Khyuitt, K. Ross, Abstraktnyi garmonicheskii analiz. T. 1. Struktura topologicheskikh grupp. Teoriya integrirovaniya. Predstavleniya grupp, Nauka, M., 1975 | MR | Zbl
[13] K. Partasarati, Vvedenie v teoriyu veroyatnostei i teoriyu mery, Mir, M., 1983 | MR | Zbl
[14] M. G. Shur, “Predelnye teoremy dlya otnoshenii, assotsiirovannykh s samosopryazhennymi operatorami i simmetrichnymi tsepyami Markova”, TVP, 45:2 (2000), 268–288 | MR | Zbl
[15] K. Iosida, Funktsionalnyi analiz, Mir, M., 1967 | MR | Zbl
[16] D. B. Pollard, R. L. Tweedie, “$R$-theory for Markov chains on a topological state space. II”, Z. Wahrsch. Verw. Gebiete, 34:4 (1976), 269–278 | DOI | MR | Zbl
[17] R. A. Aleksandryan, E. A. Mirzakhanyan, Obschaya topologiya. Uchebnoe posobie dlya vuzov, Vysshaya shkola, M., 1979 | Zbl
[18] M. G. Shur, “K teoreme ob asimptoticheskoi ravnoraspredelennosti svertochnykh stepenei simmetrichnykh mer na unimodulyarnoi gruppe”, Matem. zametki, 60:1 (1996), 120–126 | MR | Zbl