Nontoric Foliations by Lagrangian Tori of Toric Fano Varieties
Matematičeskie zametki, Tome 87 (2010) no. 1, pp. 48-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

A construction of a foliation of a toric Fano variety by Lagrangian tori is presented; it is based on linear subsystems of divisor systems of various degrees invariant under the Hamiltonian action of distinguished function-symbols. It is shown that known examples of foliations (such as the Clifford foliation and D. Auroux's example) are special cases of this construction. As an application, nontoric Lagrangian foliations by tori of two-dimensional quadrics and projective space are constructed.
Mots-clés : foliation, Auroux foliation, Berezin symbol, moment map
Keywords: toric Fano variety, Lagrangian torus, Hamiltonian action of a symbol, geometric quantization.
@article{MZM_2010_87_1_a5,
     author = {S. A. Belev and N. A. Tyurin},
     title = {Nontoric {Foliations} by {Lagrangian} {Tori} of {Toric} {Fano} {Varieties}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {48--59},
     publisher = {mathdoc},
     volume = {87},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a5/}
}
TY  - JOUR
AU  - S. A. Belev
AU  - N. A. Tyurin
TI  - Nontoric Foliations by Lagrangian Tori of Toric Fano Varieties
JO  - Matematičeskie zametki
PY  - 2010
SP  - 48
EP  - 59
VL  - 87
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a5/
LA  - ru
ID  - MZM_2010_87_1_a5
ER  - 
%0 Journal Article
%A S. A. Belev
%A N. A. Tyurin
%T Nontoric Foliations by Lagrangian Tori of Toric Fano Varieties
%J Matematičeskie zametki
%D 2010
%P 48-59
%V 87
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a5/
%G ru
%F MZM_2010_87_1_a5
S. A. Belev; N. A. Tyurin. Nontoric Foliations by Lagrangian Tori of Toric Fano Varieties. Matematičeskie zametki, Tome 87 (2010) no. 1, pp. 48-59. http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a5/

[1] M. Kontsevich, “Homological algebra of mirror symmetry”, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), Birkhäuser, Basel, 1995, 120–139 | MR | Zbl

[2] K. Hori, C. Vafa, Mirror Symmetry, arXiv: hep-th/0002222v3

[3] A. L. Gorodentsev, A. N. Tyurin, “Abeleva lagranzheva algebraicheskaya geometriya”, Izv. RAN. Ser. matem., 65:3 (2001), 15–50 | MR | Zbl

[4] N. A. Tyurin, “Geometric quantization and algebraic Lagrangian geometry”, Surveys in Geometry and Number Theory. Reports on Contemporary Russian Mathematics, London Math. Soc. Lecture Note Ser., 338, Cambridge Univ. Press, Cambridge, 2007, 279–318 | MR

[5] D. Auroux, Mirror Symmetry and T-Duality in the Complement of an Anticanonical Divisor, arXiv: math.SG/0706.3207v2

[6] D. Auroux, Special Lagrangian Fibrations, Mirror Symmetry and Calabi–Yau Double Covers, arXiv: math.SG/0803.2734v1

[7] A. Ashtekar, T. A. Schilling, Geometrical Formulation of Quantum Mechanics, arXiv: gr-qc/9706069v1

[8] Holomorphic curves in symplectic geometry, Progr. Math., 117, eds. M. Audin, J. Lafontaine, Birkhäuser, Basel, 1994 | MR | Zbl

[9] S. K. Donaldson, “Lefschetz pencils on symplectic manifolds”, J. Differential Geom., 53:2 (1999), 205–236 | MR | Zbl

[10] S. A. Belev, Sobstvennye nelineinye kvantovye podsistemy standartnykh kvantovykh sistem, Diplom bakalavra, LTF OIYaI, Dubna, 2007

[11] S. A. Belev, Geometricheskie aspekty kvantovoi teorii polya, Diplom magistra, LTF OIYaI, Dubna, 2008

[12] N. A. Tyurin, “Biratsionalnye otobrazheniya i spetsialnye lagranzhevy sloeniya”, Mnogomernaya algebraicheskaya geometriya, Sbornik statei. Posvyaschaetsya pamyati chlena-korrespondenta RAN Vasiliya Alekseevicha Iskovskikh, Tr. MIAN, 264, MAIK, M., 2009, 209–211