The Agnihotri--Woodward--Belkale Polytope and Klyachko Cones
Matematičeskie zametki, Tome 87 (2010) no. 1, pp. 101-107

Voir la notice de l'article provenant de la source Math-Net.Ru

The Agnihotri–Woodward–Belkale polytope $\Delta$ (resp., the Klyachko cone $\mathscr K$) is the set of solutions of the multiplicative (resp., additive) Horn problem, i.e., the set of triples of spectra of special unitary (resp. traceless Hermitian) $n\times n$ matrices satisfying $AB=C$ (resp. $A+B=C$). The set $\mathscr K$ is the tangent cone of $\Delta$ at the origin. The group $G=\mathbb Z_n\oplus\mathbb Z_n$ acts naturally on $\Delta$. In this note, we report on a computer calculation showing that $\Delta$ coincides with the intersection of $g\mathscr K$, $g\in G$, for $n\le 14$ but does not coincide with it for $n=15$. Our motivation was an attempt to understand how to solve the multiplicative Horn problem in practice for given conjugacy classes in $SU(n)$.
Keywords: unitary matrix, Weyl chamber, Horn problem, Gromov–Witten invariants, Littlewood–Richardson coefficients
Mots-clés : conjugacy class, Schubert calculus, Klyachko cone.
@article{MZM_2010_87_1_a10,
     author = {S. Yu. Orevkov and Yu. P. Orevkov},
     title = {The {Agnihotri--Woodward--Belkale} {Polytope} and {Klyachko} {Cones}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {101--107},
     publisher = {mathdoc},
     volume = {87},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a10/}
}
TY  - JOUR
AU  - S. Yu. Orevkov
AU  - Yu. P. Orevkov
TI  - The Agnihotri--Woodward--Belkale Polytope and Klyachko Cones
JO  - Matematičeskie zametki
PY  - 2010
SP  - 101
EP  - 107
VL  - 87
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a10/
LA  - ru
ID  - MZM_2010_87_1_a10
ER  - 
%0 Journal Article
%A S. Yu. Orevkov
%A Yu. P. Orevkov
%T The Agnihotri--Woodward--Belkale Polytope and Klyachko Cones
%J Matematičeskie zametki
%D 2010
%P 101-107
%V 87
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a10/
%G ru
%F MZM_2010_87_1_a10
S. Yu. Orevkov; Yu. P. Orevkov. The Agnihotri--Woodward--Belkale Polytope and Klyachko Cones. Matematičeskie zametki, Tome 87 (2010) no. 1, pp. 101-107. http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a10/