Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2010_87_1_a10, author = {S. Yu. Orevkov and Yu. P. Orevkov}, title = {The {Agnihotri--Woodward--Belkale} {Polytope} and {Klyachko} {Cones}}, journal = {Matemati\v{c}eskie zametki}, pages = {101--107}, publisher = {mathdoc}, volume = {87}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a10/} }
S. Yu. Orevkov; Yu. P. Orevkov. The Agnihotri--Woodward--Belkale Polytope and Klyachko Cones. Matematičeskie zametki, Tome 87 (2010) no. 1, pp. 101-107. http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a10/
[1] S. Agnihotri, C. Woodward, “Eigenvalues of products of unitary matrices and quantum Schubert calculus”, Math. Res. Lett., 5:6 (1998), 817–836 | MR | Zbl
[2] P. Belkale, “Local systems on $\mathbb P^1-S$ for $S$ a finite set”, Compositio Math., 129:1 (2001), 67–86 | DOI | MR | Zbl
[3] A. A. Klyachko, “Stable bundles, representation theory and Hermitian operators”, Selecta Math. (N.S.), 4:3 (1998), 419–445 | DOI | MR | Zbl
[4] W. Fulton, “Eigenvalues, invariant factors, highest weights, and Schubert calculus”, Bull. Amer. Math. Soc. (N.S.), 37:3 (2000), 209–249 | DOI | MR | Zbl
[5] S. Yu. Orevkov, “Quasipositivity test via unitary representations of braid groups and its applications to real algebraic curves”, J. Knot Theory Ramifications, 10:7 (2001), 1005–1023 | DOI | MR | Zbl
[6] A. Knutson, T. Tao, “The honeycomb model of $GL_n(\mathbb C)$ tensor products. I. Proof of the saturation conjecture”, J. Amer. Math. Soc., 12:4 (1999), 1055–1090 | DOI | MR | Zbl
[7] A. Knutson, T. Tao, “Honeycombs and sums of Hermitian matrices”, Notices Amer. Math. Soc., 48:2 (2001), 175–186 | MR | Zbl
[8] V. I. Danilov, G. A. Koshevoi, “Diskretnaya vypuklost i ermitovy matritsy”, Teoriya chisel, algebra i algebraicheskaya geometriya, Sbornik statei. K 80-letiyu so dnya rozhdeniya akademika Igorya Rostislavovicha Shafarevicha, Tr. MIAN, 241, Nauka, M., 2003, 68–89 | MR | Zbl
[9] T. Tao, Open Question: What is a Quantum Honeycomb?, http://terrytao.wordpress.com/2007/04/19
[10] A. Bertram, I. Ciocan-Fontanine, W. Fulton, “Quantum multiplication of Schur polynomials”, J. Algebra, 219:2 (1999), 728–746 | DOI | MR | Zbl
[11] A. S. Buch, Littlewood–Richardson Calculator, http://home.imf.au.dk/abuch/lrcalc
[12] A. Bertram, “Quantum Schubert calculus”, Adv. Math., 128:2 (1997), 289–305 | DOI | MR | Zbl
[13] A. Knutson, T. Tao, C. Woodward, “The honeycomb model of $GL_n(\mathbb C)$ tensor products. II. Puzzles determine facets of the Littlewood–Richardson cone”, J. Amer. Math. Soc., 17:1 (2004), 19–48 | DOI | MR | Zbl
[14] S. Yu. Orevkov, Yu. P. Orevkov, Simplex-Method, http://www.math.univ-toulouse.fr/õrevkov/simplex-v1-0