The Agnihotri--Woodward--Belkale Polytope and Klyachko Cones
Matematičeskie zametki, Tome 87 (2010) no. 1, pp. 101-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Agnihotri–Woodward–Belkale polytope $\Delta$ (resp., the Klyachko cone $\mathscr K$) is the set of solutions of the multiplicative (resp., additive) Horn problem, i.e., the set of triples of spectra of special unitary (resp. traceless Hermitian) $n\times n$ matrices satisfying $AB=C$ (resp. $A+B=C$). The set $\mathscr K$ is the tangent cone of $\Delta$ at the origin. The group $G=\mathbb Z_n\oplus\mathbb Z_n$ acts naturally on $\Delta$. In this note, we report on a computer calculation showing that $\Delta$ coincides with the intersection of $g\mathscr K$, $g\in G$, for $n\le 14$ but does not coincide with it for $n=15$. Our motivation was an attempt to understand how to solve the multiplicative Horn problem in practice for given conjugacy classes in $SU(n)$.
Keywords: unitary matrix, Weyl chamber, Horn problem, Gromov–Witten invariants, Littlewood–Richardson coefficients
Mots-clés : conjugacy class, Schubert calculus, Klyachko cone.
@article{MZM_2010_87_1_a10,
     author = {S. Yu. Orevkov and Yu. P. Orevkov},
     title = {The {Agnihotri--Woodward--Belkale} {Polytope} and {Klyachko} {Cones}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {101--107},
     publisher = {mathdoc},
     volume = {87},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a10/}
}
TY  - JOUR
AU  - S. Yu. Orevkov
AU  - Yu. P. Orevkov
TI  - The Agnihotri--Woodward--Belkale Polytope and Klyachko Cones
JO  - Matematičeskie zametki
PY  - 2010
SP  - 101
EP  - 107
VL  - 87
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a10/
LA  - ru
ID  - MZM_2010_87_1_a10
ER  - 
%0 Journal Article
%A S. Yu. Orevkov
%A Yu. P. Orevkov
%T The Agnihotri--Woodward--Belkale Polytope and Klyachko Cones
%J Matematičeskie zametki
%D 2010
%P 101-107
%V 87
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a10/
%G ru
%F MZM_2010_87_1_a10
S. Yu. Orevkov; Yu. P. Orevkov. The Agnihotri--Woodward--Belkale Polytope and Klyachko Cones. Matematičeskie zametki, Tome 87 (2010) no. 1, pp. 101-107. http://geodesic.mathdoc.fr/item/MZM_2010_87_1_a10/

[1] S. Agnihotri, C. Woodward, “Eigenvalues of products of unitary matrices and quantum Schubert calculus”, Math. Res. Lett., 5:6 (1998), 817–836 | MR | Zbl

[2] P. Belkale, “Local systems on $\mathbb P^1-S$ for $S$ a finite set”, Compositio Math., 129:1 (2001), 67–86 | DOI | MR | Zbl

[3] A. A. Klyachko, “Stable bundles, representation theory and Hermitian operators”, Selecta Math. (N.S.), 4:3 (1998), 419–445 | DOI | MR | Zbl

[4] W. Fulton, “Eigenvalues, invariant factors, highest weights, and Schubert calculus”, Bull. Amer. Math. Soc. (N.S.), 37:3 (2000), 209–249 | DOI | MR | Zbl

[5] S. Yu. Orevkov, “Quasipositivity test via unitary representations of braid groups and its applications to real algebraic curves”, J. Knot Theory Ramifications, 10:7 (2001), 1005–1023 | DOI | MR | Zbl

[6] A. Knutson, T. Tao, “The honeycomb model of $GL_n(\mathbb C)$ tensor products. I. Proof of the saturation conjecture”, J. Amer. Math. Soc., 12:4 (1999), 1055–1090 | DOI | MR | Zbl

[7] A. Knutson, T. Tao, “Honeycombs and sums of Hermitian matrices”, Notices Amer. Math. Soc., 48:2 (2001), 175–186 | MR | Zbl

[8] V. I. Danilov, G. A. Koshevoi, “Diskretnaya vypuklost i ermitovy matritsy”, Teoriya chisel, algebra i algebraicheskaya geometriya, Sbornik statei. K 80-letiyu so dnya rozhdeniya akademika Igorya Rostislavovicha Shafarevicha, Tr. MIAN, 241, Nauka, M., 2003, 68–89 | MR | Zbl

[9] T. Tao, Open Question: What is a Quantum Honeycomb?, http://terrytao.wordpress.com/2007/04/19

[10] A. Bertram, I. Ciocan-Fontanine, W. Fulton, “Quantum multiplication of Schur polynomials”, J. Algebra, 219:2 (1999), 728–746 | DOI | MR | Zbl

[11] A. S. Buch, Littlewood–Richardson Calculator, http://home.imf.au.dk/abuch/lrcalc

[12] A. Bertram, “Quantum Schubert calculus”, Adv. Math., 128:2 (1997), 289–305 | DOI | MR | Zbl

[13] A. Knutson, T. Tao, C. Woodward, “The honeycomb model of $GL_n(\mathbb C)$ tensor products. II. Puzzles determine facets of the Littlewood–Richardson cone”, J. Amer. Math. Soc., 17:1 (2004), 19–48 | DOI | MR | Zbl

[14] S. Yu. Orevkov, Yu. P. Orevkov, Simplex-Method, http://www.math.univ-toulouse.fr/õrevkov/simplex-v1-0