The Largest Hopf Subalgebra of a Bialgebra
Matematičeskie zametki, Tome 86 (2009) no. 6, pp. 942-946.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: bialgebra, Hopf algebra, counit, weakly finite ring, invertible subcoalgebra, Noetherian ring.
Mots-clés : coalgebra, antipode, convolution, coproduct
@article{MZM_2009_86_6_a12,
     author = {M. S. Eryashkin and S. M. Skryabin},
     title = {The {Largest} {Hopf} {Subalgebra} of a {Bialgebra}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {942--946},
     publisher = {mathdoc},
     volume = {86},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a12/}
}
TY  - JOUR
AU  - M. S. Eryashkin
AU  - S. M. Skryabin
TI  - The Largest Hopf Subalgebra of a Bialgebra
JO  - Matematičeskie zametki
PY  - 2009
SP  - 942
EP  - 946
VL  - 86
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a12/
LA  - ru
ID  - MZM_2009_86_6_a12
ER  - 
%0 Journal Article
%A M. S. Eryashkin
%A S. M. Skryabin
%T The Largest Hopf Subalgebra of a Bialgebra
%J Matematičeskie zametki
%D 2009
%P 942-946
%V 86
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a12/
%G ru
%F MZM_2009_86_6_a12
M. S. Eryashkin; S. M. Skryabin. The Largest Hopf Subalgebra of a Bialgebra. Matematičeskie zametki, Tome 86 (2009) no. 6, pp. 942-946. http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a12/

[1] S. Montgomery, Comm. Algebra, 11:6 (1983), 595–610 | DOI | MR | Zbl

[2] L. H. Rowen, Ring Theory, Vol. I, Pure Appl. Math., 127, Acad. Press, Boston, MA, 1988 | MR | Zbl

[3] W. D. Nichols, Comm. Algebra, 6:17 (1978), 1789–1800 | DOI | MR | Zbl

[4] M. E. Sweedler, Hopf Algebras, Math. Lecture Note Ser., W. A. Benjamin, New York, 1969 | MR | Zbl

[5] S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Regional Conf. Ser. in Math., 82, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl

[6] T. Y. Lam, Exercises in Classical Ring Theory, Problem Books in Math., Springer-Verlag, New York, NY, 2003 | MR | Zbl

[7] K. R. Goodearl, Comm. Algebra, 15:3 (1987), 589–609 | DOI | MR | Zbl

[8] L. A. Lambe, D. E. Radford, Introduction to the Quantum Yang–Baxter Equation and Quantum Groups. An Algebraic Approach, Math. Appl., 423, Kluwer Acad. Publ., Dordrecht, 1997 | MR | Zbl

[9] M. Takeuchi, Comm. Algebra, 22:7 (1994), 2503–2523 | DOI | MR | Zbl

[10] M. Takeuchi, J. Math. Soc. Japan, 23 (1971), 561–582 | MR | Zbl