Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2009_86_6_a12, author = {M. S. Eryashkin and S. M. Skryabin}, title = {The {Largest} {Hopf} {Subalgebra} of a {Bialgebra}}, journal = {Matemati\v{c}eskie zametki}, pages = {942--946}, publisher = {mathdoc}, volume = {86}, number = {6}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a12/} }
M. S. Eryashkin; S. M. Skryabin. The Largest Hopf Subalgebra of a Bialgebra. Matematičeskie zametki, Tome 86 (2009) no. 6, pp. 942-946. http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a12/
[1] S. Montgomery, Comm. Algebra, 11:6 (1983), 595–610 | DOI | MR | Zbl
[2] L. H. Rowen, Ring Theory, Vol. I, Pure Appl. Math., 127, Acad. Press, Boston, MA, 1988 | MR | Zbl
[3] W. D. Nichols, Comm. Algebra, 6:17 (1978), 1789–1800 | DOI | MR | Zbl
[4] M. E. Sweedler, Hopf Algebras, Math. Lecture Note Ser., W. A. Benjamin, New York, 1969 | MR | Zbl
[5] S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Regional Conf. Ser. in Math., 82, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl
[6] T. Y. Lam, Exercises in Classical Ring Theory, Problem Books in Math., Springer-Verlag, New York, NY, 2003 | MR | Zbl
[7] K. R. Goodearl, Comm. Algebra, 15:3 (1987), 589–609 | DOI | MR | Zbl
[8] L. A. Lambe, D. E. Radford, Introduction to the Quantum Yang–Baxter Equation and Quantum Groups. An Algebraic Approach, Math. Appl., 423, Kluwer Acad. Publ., Dordrecht, 1997 | MR | Zbl
[9] M. Takeuchi, Comm. Algebra, 22:7 (1994), 2503–2523 | DOI | MR | Zbl
[10] M. Takeuchi, J. Math. Soc. Japan, 23 (1971), 561–582 | MR | Zbl