A Generalization of the Menshov--Rademacher Theorem
Matematičeskie zametki, Tome 86 (2009) no. 6, pp. 925-937

Voir la notice de l'article provenant de la source Math-Net.Ru

For a sequence $\{X_n\}_{n\ge1}$ of random variables with finite second moment and a sequence $\{b_n\}_{n\ge1}$ of positive constants, new sufficient conditions for the almost sure convergence of $\sum_{n\ge1}X_n/b_n$ are obtained and the strong law of large numbers, which states that $\lim_{n\to\infty}\sum_{k=1}^nX_k/b_n=0$ almost surely, is proved. The results are shown to be optimal in a number of cases. In the theorems, assumptions have the form of conditions on $\rho_n=\sup_k(\mathsf EX_kX_{k+n})^+$, $$r_n=\sup_k\frac{(\mathsf EX_kX_{k+n})^+}{(\mathsf EX_k^2)^{1/2}(\mathsf EX_{k+n}^2)^{1/2}},$$ $\mathsf EX_n^2$, and $b_n$, where $x^+=x\vee0$ and $n\in\mathbb N$.
Keywords: strong law of large numbers, random variable, almost sure convergence, Menshov–Rademacher theorem, Kolmogorov's 0–1 law.
Mots-clés : second moment
@article{MZM_2009_86_6_a10,
     author = {P. A. Yaskov},
     title = {A {Generalization} of the {Menshov--Rademacher} {Theorem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {925--937},
     publisher = {mathdoc},
     volume = {86},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a10/}
}
TY  - JOUR
AU  - P. A. Yaskov
TI  - A Generalization of the Menshov--Rademacher Theorem
JO  - Matematičeskie zametki
PY  - 2009
SP  - 925
EP  - 937
VL  - 86
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a10/
LA  - ru
ID  - MZM_2009_86_6_a10
ER  - 
%0 Journal Article
%A P. A. Yaskov
%T A Generalization of the Menshov--Rademacher Theorem
%J Matematičeskie zametki
%D 2009
%P 925-937
%V 86
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a10/
%G ru
%F MZM_2009_86_6_a10
P. A. Yaskov. A Generalization of the Menshov--Rademacher Theorem. Matematičeskie zametki, Tome 86 (2009) no. 6, pp. 925-937. http://geodesic.mathdoc.fr/item/MZM_2009_86_6_a10/