Mots-clés : formation, supersolvable group
@article{MZM_2009_86_5_a6,
author = {Long Miao},
title = {Finite {Groups} with {Some} {Maximal} {Subgroups} of {Sylow} {Subgroups} $\mathscr M${-Supplemented}},
journal = {Matemati\v{c}eskie zametki},
pages = {692--704},
year = {2009},
volume = {86},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a6/}
}
Long Miao. Finite Groups with Some Maximal Subgroups of Sylow Subgroups $\mathscr M$-Supplemented. Matematičeskie zametki, Tome 86 (2009) no. 5, pp. 692-704. http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a6/
[1] S. Srinivasan, “Two sufficient conditions for supersolvability of finite groups”, Israel J. Math., 35:3 (1980), 210–214 | DOI | MR | Zbl
[2] M. Asaad, M. Ramadan, A. Shaalan, “Influence of $\pi$-quasinormality on maximal subgroups of Sylow subgroups of Fitting subgroup of a finite group”, Arch. Math. (Basel), 56:6 (1991), 521–527 | DOI | MR | Zbl
[3] M. Asaad, “On maximal subgroups of Sylow subgroups of finite groups”, Comm. Algebra, 26:11 (1998), 3647–3652 | DOI | MR | Zbl
[4] Y. Wang, “Finite groups with some subgroups of Sylow subgroups $c$-supplemented”, J. Algebra, 224:2 (2000), 467–478 | DOI | MR | Zbl
[5] L. Miao, W. Guo, “Finite groups with some primary subgroups $\mathscr F$-s-supplemented”, Comm. Algebra, 33:8 (2005), 2789–2800 | DOI | MR | Zbl
[6] W. Guo, The Theory of Classes of Groups, Math. Appl., 505, Kluwer Acad. Publ., Dordrecht, 2000 | MR | Zbl
[7] D. J. S. Robinson, A Course in the Theory of Groups, Grad. Texts in Math., 80, Springer-Verlag, New York, NY, 1993 | MR | Zbl
[8] M. Xu, An Introduction to Finite Groups, Sci. Press, Beijing, 1999
[9] A. N. Skiba, “A note on $c$-normal subgroups of finite groups”, Algebra Discrete Math., 2005, no. 3, 85–95 | MR | Zbl
[10] B. Huppert, Endliche Gruppen. I, Grundlehren Math. Wiss., 134, Springer-Verlag, Berlin, 1967 | MR | Zbl
[11] F. Gross, “Conjugacy of odd order Hall subgroups”, Bull. London Math. Soc., 19:4 (1987), 311–319 | DOI | MR | Zbl
[12] B. Huppert, N. Blackburn, Finite Groups. III, Grundlehren Math. Wiss., 243, Springer-Verlag, Berlin, 1982 | MR | Zbl
[13] Y. Wang, H. Wei, Y. Li, “A generalisation of Kramer's theorem and its applications”, Bull. Austral. Math. Soc., 65:3 (2002), 467–475 | DOI | MR | Zbl