On the Saturation of Subfields of Invariants of Finite Groups
Matematičeskie zametki, Tome 86 (2009) no. 5, pp. 659-663

Voir la notice de l'article provenant de la source Math-Net.Ru

Every subfield $\mathbb K(\phi)$ of the field of rational fractions $\mathbb K(x_1,\dots,x_n)$ is contained in a unique maximal subfield of the form $\mathbb K(\psi)$. The element $\psi$ is said to be generating for the element $\phi$. A subfield of $\mathbb K(x_1,\dots,x_n)$ is said to be saturated if, together with every its element, the subfield also contains the generating element. In the paper, the saturation property is studied for the subfields of invariants $\mathbb K(x_1,\dots,x_n)^G$ of a finite group $G$ of automorphisms of the field $\mathbb K(x_1\dots,x_n)$.
Keywords: finite group, saturated subfield, polynomial ring, closed rational function, the groups $\operatorname{SL}_2(\mathbb C)$, $\operatorname{PSL}_2(\mathbb C)$.
Mots-clés : polynomial invariant, subalgebra of invariants
@article{MZM_2009_86_5_a1,
     author = {I. V. Arzhantsev and A. P. Petravchuk},
     title = {On the {Saturation} of {Subfields} of {Invariants} of {Finite} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {659--663},
     publisher = {mathdoc},
     volume = {86},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a1/}
}
TY  - JOUR
AU  - I. V. Arzhantsev
AU  - A. P. Petravchuk
TI  - On the Saturation of Subfields of Invariants of Finite Groups
JO  - Matematičeskie zametki
PY  - 2009
SP  - 659
EP  - 663
VL  - 86
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a1/
LA  - ru
ID  - MZM_2009_86_5_a1
ER  - 
%0 Journal Article
%A I. V. Arzhantsev
%A A. P. Petravchuk
%T On the Saturation of Subfields of Invariants of Finite Groups
%J Matematičeskie zametki
%D 2009
%P 659-663
%V 86
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a1/
%G ru
%F MZM_2009_86_5_a1
I. V. Arzhantsev; A. P. Petravchuk. On the Saturation of Subfields of Invariants of Finite Groups. Matematičeskie zametki, Tome 86 (2009) no. 5, pp. 659-663. http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a1/