On the Saturation of Subfields of Invariants of Finite Groups
Matematičeskie zametki, Tome 86 (2009) no. 5, pp. 659-663.

Voir la notice de l'article provenant de la source Math-Net.Ru

Every subfield $\mathbb K(\phi)$ of the field of rational fractions $\mathbb K(x_1,\dots,x_n)$ is contained in a unique maximal subfield of the form $\mathbb K(\psi)$. The element $\psi$ is said to be generating for the element $\phi$. A subfield of $\mathbb K(x_1,\dots,x_n)$ is said to be saturated if, together with every its element, the subfield also contains the generating element. In the paper, the saturation property is studied for the subfields of invariants $\mathbb K(x_1,\dots,x_n)^G$ of a finite group $G$ of automorphisms of the field $\mathbb K(x_1\dots,x_n)$.
Keywords: finite group, saturated subfield, polynomial ring, closed rational function, the groups $\operatorname{SL}_2(\mathbb C)$, $\operatorname{PSL}_2(\mathbb C)$.
Mots-clés : polynomial invariant, subalgebra of invariants
@article{MZM_2009_86_5_a1,
     author = {I. V. Arzhantsev and A. P. Petravchuk},
     title = {On the {Saturation} of {Subfields} of {Invariants} of {Finite} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {659--663},
     publisher = {mathdoc},
     volume = {86},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a1/}
}
TY  - JOUR
AU  - I. V. Arzhantsev
AU  - A. P. Petravchuk
TI  - On the Saturation of Subfields of Invariants of Finite Groups
JO  - Matematičeskie zametki
PY  - 2009
SP  - 659
EP  - 663
VL  - 86
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a1/
LA  - ru
ID  - MZM_2009_86_5_a1
ER  - 
%0 Journal Article
%A I. V. Arzhantsev
%A A. P. Petravchuk
%T On the Saturation of Subfields of Invariants of Finite Groups
%J Matematičeskie zametki
%D 2009
%P 659-663
%V 86
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a1/
%G ru
%F MZM_2009_86_5_a1
I. V. Arzhantsev; A. P. Petravchuk. On the Saturation of Subfields of Invariants of Finite Groups. Matematičeskie zametki, Tome 86 (2009) no. 5, pp. 659-663. http://geodesic.mathdoc.fr/item/MZM_2009_86_5_a1/

[1] I. V. Arzhantsev, A. P. Petravchuk, “Closed polynomials and saturated subalgebras of polynomial algebras”, Ukrainian Math. J., 59:12 (2007), 1783–1790 | DOI | MR | Zbl

[2] J. Moulin Ollagnier, “Algebraic closure of a rational function”, Qual. Theory Dyn. Syst., 5:2 (2004), 285–300 | DOI | MR | Zbl

[3] A. P. Petravchuk, O. G. Iena, “On closed rational functions in several variables”, Algebra Discrete Math., 2007, no. 2, 115–124 | MR | Zbl

[4] A. van den Essen, J. Moulin Ollagnier, A. Nowicki, “Rings of constants of the form $k[f]$”, Comm. Algebra, 34:9 (2006), 3315–3321 | DOI | MR | Zbl

[5] A. Bodin, “Reducibility of rational functions in several variables”, Israel J. Math., 164 (2008), 333–347 | DOI | MR | Zbl

[6] G. A. Miller, H. F. Blichfeldt, L. E. Dickson, Theory and Applications of Finite Groups, Dover Publ., New York, NY, 1916 | MR | Zbl

[7] S. S.-T. Yau, Y. Yu, Gorenstein Quotient Singularities in Dimension Three, Mem. Amer. Math. Soc., 105, no. 505, Amer. Math. Soc., Providence, RI, 1993, 88 pp. | MR | Zbl