Asymptotics of the Solution of the Steklov Spectral Problem in a Domain with a Blunted Peak
Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 571-587.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct and justify the asymptotics of the eigenvalues and eigenfunctions of the Laplace equation with Steklov boundary conditions in a domain with an acute peak whose end of size $O(\varepsilon)$ is broken off. In particular, we establish that any positive eigenvalue with a fixed number turns out to be infinitesimal as $\varepsilon\to+0$ and the corresponding eigenfunction is localized in the $c\varepsilon$-neighborhood of the vertex of the peak.
Keywords: Steklov spectral problem, Laplace operator, domain with a blunted peak, Sobolev space, elliptic boundary-value problem, Neumann problem, Hardy inequality, Poincaré inequality, Green's formula, Hilbert space.
@article{MZM_2009_86_4_a9,
     author = {S. A. Nazarov},
     title = {Asymptotics of the {Solution} of the {Steklov} {Spectral} {Problem} in a {Domain} with a {Blunted} {Peak}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {571--587},
     publisher = {mathdoc},
     volume = {86},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a9/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Asymptotics of the Solution of the Steklov Spectral Problem in a Domain with a Blunted Peak
JO  - Matematičeskie zametki
PY  - 2009
SP  - 571
EP  - 587
VL  - 86
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a9/
LA  - ru
ID  - MZM_2009_86_4_a9
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Asymptotics of the Solution of the Steklov Spectral Problem in a Domain with a Blunted Peak
%J Matematičeskie zametki
%D 2009
%P 571-587
%V 86
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a9/
%G ru
%F MZM_2009_86_4_a9
S. A. Nazarov. Asymptotics of the Solution of the Steklov Spectral Problem in a Domain with a Blunted Peak. Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 571-587. http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a9/

[1] V. G. Mazya, Prostranstva S. L. Soboleva, LGU, L., 1985 | MR | Zbl

[2] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, LGU, L., 1980 | MR | Zbl

[3] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. T. 1. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002

[4] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976 | MR | Zbl

[5] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR | Zbl

[6] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5 (1957), 3–122 | MR | Zbl

[7] S. A. Nazarov, “Ravnomernye otsenki ostatkov v asimptoticheskikh razlozheniyakh reshenii zadachi o sobstvennykh kolebaniyakh pezoelektricheskoi plastiny”, Problemy matematicheskogo analiza, Vyp. 25, Nauchnaya kniga, Novosibirsk, 2003, 99–188

[8] M. Lobo, S. A. Nazarov, E. Perez, “Eigen-oscillations of contrasting non-homogeneous elastic bodies: asymptotic and uniform estimates for eigenvalues”, IMA J. Appl. Math., 70:3 (2005), 419–458 | MR | Zbl