Orders of Discriminator Classes in Multivalued Logic
Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 550-556

Voir la notice de l'article provenant de la source Math-Net.Ru

For $k\ge2$, discriminator classes, that is, closed classes of functions of $k$-valued logic containing the ternary discriminator $p$, are considered. It is proved that any discriminator class has order at most $\max(3,k)$; moreover, the order of any discriminator class containing all homogeneous functions does not exceed $\max(3,k-1)$, and the order of a discriminator class containing all even functions does not exceed $\max(3,k-2)$. All of these three bounds are attainable.
Keywords: function of multivalued logic, discriminator class of functions, ternary discriminator, structure homogeneous functions, homogeneous functions, even functions.
@article{MZM_2009_86_4_a7,
     author = {S. S. Marchenkov},
     title = {Orders of {Discriminator} {Classes} in {Multivalued} {Logic}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {550--556},
     publisher = {mathdoc},
     volume = {86},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a7/}
}
TY  - JOUR
AU  - S. S. Marchenkov
TI  - Orders of Discriminator Classes in Multivalued Logic
JO  - Matematičeskie zametki
PY  - 2009
SP  - 550
EP  - 556
VL  - 86
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a7/
LA  - ru
ID  - MZM_2009_86_4_a7
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%T Orders of Discriminator Classes in Multivalued Logic
%J Matematičeskie zametki
%D 2009
%P 550-556
%V 86
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a7/
%G ru
%F MZM_2009_86_4_a7
S. S. Marchenkov. Orders of Discriminator Classes in Multivalued Logic. Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 550-556. http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a7/