The Number of Partitions of a Natural Number~$n$ into Parts Each of which is not Less than~$m$
Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 538-542.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present recurrence formulas for the number of partitions of a natural number $n$ whose parts must be not less than $m$. A simple proof of Euler's formula for the number of partitions is given. We construct the triangle of partitions, put forward conjectures concerning the properties of the triangle, and propose an algorithm for calculating the partitions. An original graphical interpretation for the partition function is presented.
Keywords: partition of a natural number, partition function, generating function.
Mots-clés : Euler's formula, triangle of partitions
@article{MZM_2009_86_4_a5,
     author = {V. V. Kruchinin},
     title = {The {Number} of {Partitions} of a {Natural} {Number~}$n$ into {Parts} {Each} of which is not {Less} than~$m$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {538--542},
     publisher = {mathdoc},
     volume = {86},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a5/}
}
TY  - JOUR
AU  - V. V. Kruchinin
TI  - The Number of Partitions of a Natural Number~$n$ into Parts Each of which is not Less than~$m$
JO  - Matematičeskie zametki
PY  - 2009
SP  - 538
EP  - 542
VL  - 86
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a5/
LA  - ru
ID  - MZM_2009_86_4_a5
ER  - 
%0 Journal Article
%A V. V. Kruchinin
%T The Number of Partitions of a Natural Number~$n$ into Parts Each of which is not Less than~$m$
%J Matematičeskie zametki
%D 2009
%P 538-542
%V 86
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a5/
%G ru
%F MZM_2009_86_4_a5
V. V. Kruchinin. The Number of Partitions of a Natural Number~$n$ into Parts Each of which is not Less than~$m$. Matematičeskie zametki, Tome 86 (2009) no. 4, pp. 538-542. http://geodesic.mathdoc.fr/item/MZM_2009_86_4_a5/

[1] N. Ya. Vilenkin, Kombinatorika, Nauka, M., 1969 | MR | Zbl

[2] M. Kholl, Kombinatorika, Mir, M., 1970 | MR | Zbl

[3] G. Endryus, Teoriya razbienii, Nauka, M., 1982 | MR | Zbl

[4] J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/ñjas/sequences