Banach Algebras Associated with Linear Operator Pencils
Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 394-401.

Voir la notice de l'article provenant de la source Math-Net.Ru

A direct relationship between the theory of pseudoresolvents and the spectral theory of linear operator pencils is established.
Keywords: differential equation not resolved with respect to derivatives, operator pencil, resolvent, spectrum, pseudoresolvent, maximal pseudoresolvent, Banach algebra
Mots-clés : algebra morphism.
@article{MZM_2009_86_3_a8,
     author = {I. V. Kurbatova},
     title = {Banach {Algebras} {Associated} with {Linear} {Operator} {Pencils}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {394--401},
     publisher = {mathdoc},
     volume = {86},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a8/}
}
TY  - JOUR
AU  - I. V. Kurbatova
TI  - Banach Algebras Associated with Linear Operator Pencils
JO  - Matematičeskie zametki
PY  - 2009
SP  - 394
EP  - 401
VL  - 86
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a8/
LA  - ru
ID  - MZM_2009_86_3_a8
ER  - 
%0 Journal Article
%A I. V. Kurbatova
%T Banach Algebras Associated with Linear Operator Pencils
%J Matematičeskie zametki
%D 2009
%P 394-401
%V 86
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a8/
%G ru
%F MZM_2009_86_3_a8
I. V. Kurbatova. Banach Algebras Associated with Linear Operator Pencils. Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 394-401. http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a8/

[1] M. G. Krein, G. K. Langer, “O nekotorykh matematicheskikh printsipakh lineinoi teorii dempfirovannykh kolebanii kontinuumov”, Prilozhenie teorii funktsii v mekhanike sploshnoi sredy, Nauka, M., 1965, 283–322 | MR | Zbl

[2] N. I. Radbel, A. G. Rutkas, “O lineinykh operatornykh puchkakh v nekanonicheskikh sistemakh”, Teoriya funktsii, funktsion. analiz i ikh prilozh., 17 (1973), 3–14 | MR | Zbl

[3] A. G. Rutkas, “Zadacha Koshi dlya uravneniya $Ax'(t)+Bx(t)=f(t)$”, Differents. uravneniya, 11:11 (1975), 1996–2010 | MR | Zbl

[4] M. Povoas, “On some singular hyperbolic evolution equations”, J. Math. Pures Appl. (9), 60:2 (1981), 133–192 | MR | Zbl

[5] A. Favini, A. Yagi, Degenerate Differential Equations in Banach Spaces, Monogr. Textbooks Pure Appl. Math., 215, Marcel Dekker, New York, 1999 | MR | Zbl

[6] A. G. Baskakov, K. I. Chernyshov, “Spektralnyi analiz lineinykh otnoshenii i vyrozhdennye polugruppy operatorov”, Matem. sb., 193:11 (2002), 3–42 | MR | Zbl

[7] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1988 | MR | Zbl

[8] V. V. Ditkin, “Nekotorye spektralnye svoistva puchka lineinykh operatorov v banakhovom prostranstve”, Matem. zametki, 22:6 (1977), 847–857 | MR | Zbl

[9] V. V. Ditkin, “O nekotorykh spektralnykh svoistvakh puchka lineinykh ogranichennykh operatorov”, Matem. zametki, 31:1 (1982), 75–79 | MR | Zbl

[10] A. S. Markus, Vvedenie v spektralnuyu teoriyu polinomialnykh operatornykh puchkov, Shtiintsa, Kishinev, 1986 | MR | Zbl

[11] G. A. Sviridyuk, “K obschei teorii polugrupp operatorov”, UMN, 49:4 (1994), 47–74 | MR | Zbl

[12] V. E. Fedorov, “Vyrozhdennye silno nepreryvnye polugruppy operatorov”, Algebra i analiz, 12:3 (2000), 173–200 | MR | Zbl

[13] R. Cross, Multivalued Linear Operators, Monogr. Textbooks Pure Appl. Math., 213, Marcel Dekker, New York, 1998 | MR | Zbl

[14] I. Gohberg, S. Goldberg, M. A. Kaashoek, Classes of Linear Operators, Vol. 1, Oper. Theory Adv. Appl., 49, Birkhäuser-Verlag, Basel, 1990 | MR | Zbl

[15] F. Stummel, “Diskrete Konvergenz linearer Operatoren. II”, Math. Z., 120 (1971), 231–264 | MR | Zbl

[16] N. Burbaki, Spektralnaya teoriya, Elementy matematiki, Mir, M., 1972 | MR | Zbl

[17] U. Rudin, Funktsionalnyi analiz, Mir, M., 1975 | MR | Zbl

[18] E. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, IL, M., 1962 | MR | Zbl