Quadratically Normal Matrices of Type~1 and Unitary Similarities between Them
Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 371-379.

Voir la notice de l'article provenant de la source Math-Net.Ru

Verification of the unitary similarity between matrices having quadratic minimal polynomials is known to be much cheaper than the use of the general Specht–Pearcy criterion. Such an economy is possible due to the following fact: $n\times n$ matrices $A$ and $B$ with quadratic minimal polynomials are unitarily similar if and only if $A$ and $B$ have the same eigenvalues and the same singular values. It is shown that this fact is also valid for a subclass of matrices with cubic minimal polynomials, namely, quadratically normal matrices of type 1.
Keywords: unitary similarity, quadratic minimal polynomials, cubic minimal polynomials
Mots-clés : quadratic normal matrices, Jordan form.
@article{MZM_2009_86_3_a5,
     author = {Kh. D. Ikramov},
     title = {Quadratically {Normal} {Matrices} of {Type~1} and {Unitary} {Similarities} between {Them}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {371--379},
     publisher = {mathdoc},
     volume = {86},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a5/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - Quadratically Normal Matrices of Type~1 and Unitary Similarities between Them
JO  - Matematičeskie zametki
PY  - 2009
SP  - 371
EP  - 379
VL  - 86
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a5/
LA  - ru
ID  - MZM_2009_86_3_a5
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T Quadratically Normal Matrices of Type~1 and Unitary Similarities between Them
%J Matematičeskie zametki
%D 2009
%P 371-379
%V 86
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a5/
%G ru
%F MZM_2009_86_3_a5
Kh. D. Ikramov. Quadratically Normal Matrices of Type~1 and Unitary Similarities between Them. Matematičeskie zametki, Tome 86 (2009) no. 3, pp. 371-379. http://geodesic.mathdoc.fr/item/MZM_2009_86_3_a5/

[1] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989 | MR | Zbl

[2] C. Pearcy, “A complete set of unitary invariants for operators generating finite $W^*$-algebras of type I”, Pacific J. Math., 12 (1962), 1405–1416 | MR | Zbl

[3] A. George, Kh. D. Ikramov, “Unitary similarity of matrices with quadratic minimal polynomials”, Linear Algebra Appl., 349:1–3 (2002), 11–16 | DOI | MR | Zbl

[4] Yu. A. Alpin, Kh. D. Ikramov, “Ob unitarnom podobii algebr, porozhdaemykh parami ortoproektorov”, Chislennye metody i voprosy organizatsii vychislenii. XVIII, Zap. nauchn. sem. POMI, 323, POMI, SPb., 2005, 5–14 | MR | Zbl

[5] F. Kittaneh, “On the structure of polynomially normal operators”, Bull. Austral. Math. Soc., 30:1 (1984), 11–18 | DOI | MR | Zbl

[6] M. Huhtanen, “Aspects of nonnormality for iterative methods”, Linear Algebra Appl., 394:1 (2005), 119–144 | DOI | MR | Zbl

[7] Kh. D. Ikramov, “Kanonicheskaya forma Shura unitarno kvazidiagonalizuemoi matritsy”, ZhVM i MF, 37:12 (1997), 1411–1415 | MR | Zbl